Clinically available deep brain recordings in patients with Parkinson disease (PD) offer insights into disease mechanisms and create a pathway for personalized treatment strategies. This case illustrates the transformative potential of recordings of neuronal firing in the form of local field potentials (LFPs) by detailing a patient's clinical trajectory for 6 months after deep brain stimulation (DBS) surgery to treat their PD symptoms. LFPs, obtained easily in clinic with a tablet interface to measure and track brain rhythms across the disease course, enriched the patient's clinical picture. Specifically, strong beta peaks were captured at initial programming, and, as the beta peaks diminished over the course of optimizing settings, symptoms improved. These signals may also reveal insights into the neural dynamics of PD such as hypersynchrony in basal ganglia circuitry. Furthermore, the ability to record chronically may unlock new understanding of neuronal dysfunction in PD, possibly enabling future adaptive DBS. In conclusion, identification, tracking, and modulation of LFPs correlated with subjective and objective clinical improvement in the case presented. The use of neurophysiologic signals in the future may lead to therapeutic innovations for our patients with PD.

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000209283DOI Listing

Publication Analysis

Top Keywords

local field
8
field potentials
8
parkinson disease
8
deep brain
8
patient's clinical
8
beta peaks
8
bridging gap
4
gap local
4
potentials offer
4
offer peek
4

Similar Publications

The need for standardized criteria in partner and child maltreatment response systems is critical for providing fair decisions, allocating family support, producing reliable research findings, and aiding prevention efforts, among other tasks. The primary goal of this study was to replicate Heyman and Slep's (see record 2009-23534-017) study-whether maltreatment incident determination committee decisions of local sites matched those of master reviewers. This study extended the prior work by testing if specific training techniques (i.

View Article and Find Full Text PDF

Local Polarization Piezoelectric Electric Field Promoted Water Dissociation for Hydroxyl Radical Generation under Ambient Humidity Condition.

Adv Mater

January 2025

College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.

Combining piezocatalysts with mechanical ball milling for dissociating water to generate hydroxyl radicals (·OH) offers unprecedented opportunities for energy conversion and environmental remediation. However, the in-depth insights into the relationship between water and local polarization piezoelectric electric field (LPPEF) are currently lacking, in particularly, the ·OH formation mechanism in ball milling driven piezocatalyst system is not systematically elucidated. To this end, the present work constructs a ball milling driven piezoelectric solid/liquid interface between piezoelectric PbBOCl (PBOC) and different contents of water to investigate LPPEF initiated catalytic reaction.

View Article and Find Full Text PDF

Mode-informed complex-valued neural processes for matched field processing.

J Acoust Soc Am

January 2025

School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

A complex-valued neural process method, combined with modal depth functions (MDFs) of the ocean waveguide, is proposed to reconstruct the acoustic field. Neural networks are used to describe complex Gaussian processes, modeling the distribution of the acoustic field at different depths. The network parameters are optimized through a meta-learning strategy, preventing overfitting under small sample conditions (sample size equals the number of array elements) and mitigating the slow reconstruction speed of Gaussian processes (GPs), while denoising and interpolating sparsely distributed acoustic field data, generating dense field data for virtual receiver arrays.

View Article and Find Full Text PDF

Purpose: MR-based FID navigators (FIDnavs) do not require gradient pulses and are attractive for prospective motion correction (PMC) due to short acquisition times and high sampling rates. However, accuracy and precision are limited and depend on a separate calibration measurement. Besides FIDnavs, stationary NMR field probes are also capable of measuring local, motion-induced field changes.

View Article and Find Full Text PDF

Dissecting AlphaFold2's capabilities with limited sequence information.

Bioinform Adv

November 2024

Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.

Summary: Protein structure prediction aims to infer a protein's three-dimensional (3D) structure from its amino acid sequence. Protein structure is pivotal for elucidating protein functions, interactions, and driving biotechnological innovation. The deep learning model AlphaFold2, has revolutionized this field by leveraging phylogenetic information from multiple sequence alignments (MSAs) to achieve remarkable accuracy in protein structure prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!