A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unsupervised local center of mass based scoliosis spinal segmentation and Cobb angle measurement. | LitMetric

Scoliosis is a medical condition in which a person's spine has an abnormal curvature and Cobb angle is a measurement used to evaluate the severity of a spinal curvature. Presently, automatic Existing Cobb angle measurement techniques require huge dataset, time-consuming, and needs significant effort. So, it is important to develop an unsupervised method for the measurement of Cobb angle with good accuracy. In this work, an unsupervised local center of mass (LCM) technique is proposed to segment the spine region and further novel Cobb angle measurement method is proposed for accurate measurement. Validation of the proposed method was carried out on 2D X-ray images from the Saudi Arabian population. Segmentation results were compared with GMM-Based Hidden Markov Random Field (GMM-HMRF) segmentation method based on sensitivity, specificity, and dice score. Based on the findings, it can be observed that our proposed segmentation method provides an overall accuracy of 97.3% whereas GMM-HMRF has an accuracy of 89.19%. Also, the proposed method has a higher dice score of 0.54 compared to GMM-HMRF. To further evaluate the effectiveness of the approach in the Cobb angle measurement, the results were compared with Senior Scoliosis Surgeon at Multispecialty Hospital in Saudi Arabia. The findings indicated that the segmentation of the scoliotic spine was nearly flawless, and the Cobb angle measurements obtained through manual examination by the expert and the algorithm were nearly identical, with a discrepancy of only ± 3 degrees. Our proposed method can pave the way for accurate spinal segmentation and Cobb angle measurement among scoliosis patients by reducing observers' variability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956862PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300685PLOS

Publication Analysis

Top Keywords

cobb angle
32
angle measurement
24
proposed method
12
unsupervised local
8
local center
8
center mass
8
spinal segmentation
8
cobb
8
segmentation cobb
8
angle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!