Zika virus (ZIKV) outbreak caused one of the most significant medical emergencies in the Americas due to associated microcephaly in newborns. To evaluate the impact of ZIKV infection on neuronal cells over time, we retrieved gene expression data from several ZIKV-infected samples obtained at different time point post-infection (pi). Differential gene expression analysis was applied at each time point, with more differentially expressed genes (DEG) identified at 72h pi. There were 5 DEGs (PLA2G2F, TMEM71, PKD1L2, UBD, and TNFAIP3 genes) across all timepoints, which clearly distinguished between infected and healthy samples. The highest expression levels of all five genes were identified at 72h pi. Taken together, our results indicate that ZIKV infection greatly impacts human neural cells at early times of infection, with peak perturbation observed at 72h pi. Our analysis revealed that all five DEGs, in samples of ZIKV-infected human neural stem cells, remained highly upregulated across the timepoints evaluated. Moreover, despite the pronounced inflammatory host response observed throughout infection, the impact of ZIKV is variable over time. Finally, the five DEGs identified herein play prominent roles in infection, and could serve to guide future investigations into virus-host interaction, as well as constitute targets for therapeutic drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956780PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290209PLOS

Publication Analysis

Top Keywords

impact zikv
12
zikv infection
12
gene expression
12
neural cells
8
cells time
8
time point
8
identified 72h
8
human neural
8
infection
6
time
5

Similar Publications

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV.

View Article and Find Full Text PDF

Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases.

View Article and Find Full Text PDF

Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions.

Vaccines (Basel)

November 2024

Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.

The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies.

View Article and Find Full Text PDF

are indoor-dwelling vectors of many arboviruses, including Zika (ZIKV) and chikungunya (CHIKV). The dynamics of these viruses within the mosquito are known to be temperature-dependent, and models that address risk and predictions of the transmission efficiency and patterns typically use meteorological temperature data. These data do not differentiate the temperatures experienced by mosquitoes in different microclimates, such as indoor vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!