Purpose: Steatohepatitic hepatocellular carcinoma (SH-HCC) is characterized by intratumoral fat with > 50% inflammatory changes. However, intratumoral fat (with or without inflammation) can also be found in not-otherwise specified HCC (NOS-HCC). We compared the imaging features and outcome of resected HCC containing fat on pathology including SH-HCC (> 50% steatohepatitic component), NOS-HCC with < 50% steatohepatitic component (SH-NOS-HCC), and fatty NOS-HCC (no steatohepatitic component).

Material And Methods: From September 2012 to June 2021, 94 patients underwent hepatic resection for fat-containing HCC on pathology. Imaging features and categories were assessed using LIRADS v2018. Fat quantification was performed on chemical-shift MRI. Recurrence-free and overall survival were estimated.

Results: Twenty-one patients (26%) had nonalcoholic steatohepatitis (NASH). The median intra-tumoral fat fraction was 8%, with differences between SH-HCC and SH-NOS-HCC (9.5% vs. 5% p = 0.03). There was no difference in major LI-RADS features between all groups; most tumors were classified as LR-4/5. A mosaic architecture on MRI was rare (7%) in SH-HCC, a fat in mass on CT was more frequently depicted (48%) in SH-HCC. A combination of NASH with no mosaic architecture on MRI or NASH with fat in mass on CT yielded excellent specificity for diagnosing SH-HCC (97.6% and 97.7%, respectively). The median recurrence-free and overall survival were 58 and 87 months, with no difference between groups (p = 0.18 and p = 0.69).

Conclusion: In patients with NASH, an SH-HCC may be suspected in L4/LR-5 observations with no mosaic architecture at MRI or with fat in mass on CT. Oncological outcomes appear similar between fat-containing HCC subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11547-024-01807-wDOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
8
intratumoral fat
8
imaging prognostic
4
prognostic characterization
4
characterization fat-containing
4
fat-containing hepatocellular
4
carcinoma subtypes
4
subtypes purpose
4
purpose steatohepatitic
4
steatohepatitic hepatocellular
4

Similar Publications

c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma.

Arch Biochem Biophys

January 2025

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required.

View Article and Find Full Text PDF

Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.

Med Image Anal

January 2025

Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea. Electronic address:

This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions.

View Article and Find Full Text PDF

STAT3 Orchestrates Immune Dynamics in Hepatocellular Carcinoma: A Pivotal Nexus in Tumor Progression.

Crit Rev Oncol Hematol

January 2025

Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.

Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms.

View Article and Find Full Text PDF

Background And Aims: Around 750,000 patients per year will be cured of HCV infection until 2030. Those with compensated advanced chronic liver disease remain at risk for hepatic decompensation and de novo HCC. Algorithms have been developed to stratify risk early after cure; however, data on long-term outcomes and the prognostic utility of these risk stratification algorithms at later time points are lacking.

View Article and Find Full Text PDF

The impact of LRP4 mutations on hepatocellular carcinoma recurrence and immunotherapy response.

Hepatology

January 2025

State Key Laboratory of Liver Research, Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!