Purpose Of Review: Radiofrequency ablation (RFA) is a minimally invasive procedure for facet joint pain. The targets for the procedure are the medial branches of the dorsal spinal nerves which innervate the facet joints. Before RFA, patients undergo diagnostic meal branch blocks to ensure appropriate pain relief and confirm the utility of proceeding to RFA. The success of RFA relies heavily on procedural technique and accurate placement near the medial branch.
Recent Findings: Motor testing is utilized in the lumbar region to assess the response of the multifidus and ensure proper placement of the RFA probe to prevent inadvertent damage to surrounding spinal anatomy. However, relying on motor responses in this area presents challenges given the frequency of lack of muscle twitching. Factors contributing to limited muscle twitch responses include muscle atrophy, excessive lordosis, facet arthropathy, local anesthetic use before ablation, and previous surgical neurotomy. These complexities highlight the challenges in ensuring precise motor stimulation during RFA. Despite these obstacles, accurate anatomical placement remains crucial. For RFA cases that prove challenging, relying on anatomical placement can be adequate to proceed with the procedure. Bridging knowledge gaps is vital for standardized practices and safer procedures. Further research is necessary to refine techniques, understand patient-specific factors, and enhance the efficacy of RFA in managing chronic lumbar facet joint pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11916-024-01232-8 | DOI Listing |
J Neurosci
January 2025
Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA.
Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.
View Article and Find Full Text PDFStereotact Funct Neurosurg
January 2025
Introduction: In 2015, directional leads have been released in Europe for deep brain stimulation (DBS) and have been particularly used for subthalamic nucleus (STN) DBS for Parkinson's disease (PD). In this study we aimed to compare an omnidirectional and directional leads cohort of PD patients when it comes to clinical effectiveness and to assess the correlation with volume of tissue activated - target overlap (VTA-target).
Methods: A total of 60 consecutive patients were retrospectively included.
J Neural Eng
January 2025
Precision Neuroscience, 54 W 21st Street, New York, New York, 10010, UNITED STATES.
Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.
View Article and Find Full Text PDFBehav Pharmacol
January 2025
Department of Psychology, Massachusetts College of Liberal Arts, Massachusetts, USA.
In recent years, the recreational use of xylazine has increased dramatically in the USA. Although xylazine has been used as an anesthetic in veterinary medicine for decades, little is known about its behavioral effects. We took advantage of the planarian's innate negative phototaxis, the reliable movement from the light side to the dark side of a Petri dish, to explore the organism's suitability as an animal model for investigating the preclinical pharmacology of xylazine.
View Article and Find Full Text PDFBrain
January 2025
Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.
The somato-cognitive action network (SCAN) consists of three nodes interspersed within Penfield's motor effector regions. The configuration of the somato-cognitive action network nodes resembles the one of the 'plis de passage' of the central sulcus: small gyri bridging the precentral and postcentral gyri. Thus, we hypothesize that these may provide a structural substrate of the somato-cognitive action network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!