Recently, the usage of a cold-bonded method in the production of artificial green geopolymer coarse aggregates (GCA) has been crucial from an economic and environmental perspective because the sintering method consumes an enormous quantity of energy and generates a significant quantity of pollutants. This research investigated the manufacture of GCA via cold-bonded pelletization using two distinct industrial byproducts (GGBFS and FA) via a new and simpler pelletization technology. Three different binders were used to produce three distinct types of GCAs as partial replacements for natural coarse aggregate (NCA) at varying replacement rates (0%, 25%, 50%, and 75%). The first group used ground-granulated blast furnace slag, while the second used GGBFS with perlite, and the third used FA with perlite. An alkaline activator was commonly used with all three groups. The physical and mechanical properties of three distinct varieties of GCA were recorded. The results indicated that the mechanical and chemical properties of three different types of GCAs were nearly identical to those of natural aggregate, with the exception of their increased water absorption. According to the findings, the recommended mixtures were suitable for usage in the construction industry. The results indicated that the ratio of all investigated attributes declined as the number of GCAs increased. In contrast, lightweight concrete can be obtained at a ratio of GCA (FA with perlite) equal to 75%, where unit weight, compressive, splitting tensile, flexural, and water absorption strengths were 1.87 gm/cm, 20.2 MPa, 1.8 MPa, 8 MPa, and 6.0%, respectively (FA with perlite).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052842PMC
http://dx.doi.org/10.1007/s11356-024-32987-7DOI Listing

Publication Analysis

Top Keywords

artificial green
8
green geopolymer
8
three distinct
8
types gcas
8
properties three
8
water absorption
8
mpa mpa
8
three
5
assessment properties
4
properties concrete
4

Similar Publications

Artificial cell-free system for the sustainable production of acetoin from bioethanol.

Bioresour Technol

January 2025

Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain. Electronic address:

The present work introduces and validates an artificial cell free system for the synthesis of acetoin from ethanol, representing a greener alternative to conventional chemical synthesis. The one pot multi-enzymatic system, which employs pyruvate decarboxylase from Zymobacter palmae (ZpPDC), alcohol dehydrogenase from Saccharomyces cerevisiae (ScADH), and NADH oxidase from Streptococcus pyogenes (SpNOX), achieves nearly 100 % substrate conversion and reaction yield within 6 h under optimal conditions (pH 7.5, enzyme activities: ZpPDC 100 U·mL, ScADH 50 U·mL, SpNOX 127 U·mL, and 1 mM NAD).

View Article and Find Full Text PDF

Introduction: Humans acquire tick-borne pathogens (TBPs) from infected ticks contacted during outdoor activities. Outdoor activity is at its highest in urban green spaces, where the presence of tick populations has increasingly been observed. Consequently, more insight into factors influencing the presence of ticks therein is needed.

View Article and Find Full Text PDF

Study Objectives: This paper validates TipTraQ, a compact home sleep apnea testing (HSAT) system. TipTraQ comprises a fingertip-worn device, a mobile application, and a cloud-based deep learning artificial intelligence (AI) system. The device utilizes PPG (red, infrared, and green channels) and accelerometer sensors to assess sleep apnea by the AI system.

View Article and Find Full Text PDF

Jewel beetles pose significant threats to forestry, and effective traps are needed to monitor and manage them. Green traps often catch more beetles, but purple traps catch a greater proportion of females. Understanding the function and mechanism of this behavior can provide a rationale for trap optimization.

View Article and Find Full Text PDF

Representation models and processing operators for quantum informational multi-media.

PLoS One

January 2025

College of Information Science and Technology & College of Artificial Intelligence, Nanjing Forestry University, Nanjing, China.

To enhance the efficacy of multimedia quantum processing and diminish processing overhead, an advanced multimedia quantum representation model and quantum video display framework are devised. A range of framework processing operators are also developed, including an image color compensation operator, a bit plane inversion operator, and a frame displacement operator. In addition, to address image security issues, two quantum image operations have been proposed: color transformation operation and pixel blending operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!