Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To assess the effectiveness of a deep learning model using contrastenhanced ultrasound (CEUS) images in distinguishing between low-grade (grade I and II) and high-grade (grade III and IV) clear cell renal cell carcinoma (ccRCC).
Methods: A retrospective study was conducted using CEUS images of 177 Fuhrmangraded ccRCCs (93 low-grade and 84 high-grade) from May 2017 to December 2020. A total of 6412 CEUS images were captured from the videos and normalized for subsequent analysis. A deep learning model using the RepVGG architecture was proposed to differentiate between low-grade and high-grade ccRCC. The model's performance was evaluated based on sensitivity, specificity, positive predictive value, negative predictive value and area under the receiver operating characteristic curve (AUC). Class activation mapping (CAM) was used to visualize the specific areas that contribute to the model's predictions.
Results: For discriminating high-grade ccRCC from low-grade, the deep learning model achieved a sensitivity of 74.8%, specificity of 79.1%, accuracy of 77.0%, and an AUC of 0.852 in the test set.
Conclusion: The deep learning model based on CEUS images can accurately differentiate between low-grade and high-grade ccRCC in a non-invasive manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00345-024-04889-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!