MgH is a promising high-capacity solid-state hydrogen storage material, while its application is greatly hindered by the high desorption temperature and sluggish kinetics. Herein, intertwined 2D oxygen vacancy-rich VO nanosheets (H-VO) are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH. The as-prepared MgH-H-VO composites exhibit low desorption temperatures (T = 185 °C) with a hydrogen capacity of 6.54 wt%, fast kinetics (E = 84.55 ± 1.37 kJ mol H for desorption), and long cycling stability. Impressively, hydrogen absorption can be achieved at a temperature as low as 30 °C with a capacity of 2.38 wt% within 60 min. Moreover, the composites maintain a capacity retention rate of ~ 99% after 100 cycles at 275 °C. Experimental studies and theoretical calculations demonstrate that the in-situ formed VH/V catalysts, unique 2D structure of H-VO nanosheets, and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties. Notably, the existence of oxygen vacancies plays a double role, which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH, but also indirectly affect the activity of the catalytic phase VH/V, thereby further boosting the hydrogen storage performance of MgH. This work highlights an oxygen vacancy excited "hydrogen pump" effect of VH/V on the hydrogen sorption of Mg/MgH. The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231122 | PMC |
http://dx.doi.org/10.1007/s40820-024-01375-8 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Science and Technology, Federal University of São Paulo, 12247-014, São José dos Campos, São Paulo, Brazil.
This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China. Electronic address:
Micronization is frequently employed to increase the dissolution of poorly soluble drugs, but it easily led to powder aggregation and difficult to mix well on the micro level with poor content uniformity and erratic dissolution behavior. Mannitol is the most commonly used pharmaceutical excipient, and its β form (β-mannitol) is commercially available and extensively investigated, whereas form α (α-mannitol) remain poorly understood. Here, this study demonstrated that α-mannitol could significantly eliminate aggregation phenomena of micronized drugs (i.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.
View Article and Find Full Text PDFEnergy Clim Chang
December 2024
South China University of Technology, School of Future Technology, 777 Xingye Ave East, Panyu District, Guangzhou, Guangdong, 511442, China.
Hydrogen can be used as an energy carrier and chemical feedstock to reduce greenhouse gas emissions, especially in difficult-to-decarbonize markets such as medium- and heavy-duty vehicles, aviation and maritime, iron and steel, and the production of fuels and chemicals. Significant literature has been accumulated on engineering-based assessments of various hydrogen technologies, and real-world projects are validating technology performance at larger scales and for low-carbon supply chains. While energy system models continue to be updated to track this progress, many are currently limited in their representation of hydrogen, and as a group they tend to generate highly variable results under decarbonization constraints.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Physics & Chemistry, DGIST Daegu 42988 Korea
Metal-organic frameworks (MOFs), characterized by dynamic metal-ligand coordination bonding, have pivotal roles in catalysis, gas storage, and separation processes, owing to their open metal sites (OMSs). These sites, however, are frequently occupied by Lewis-base solvent molecules, necessitating activation to expose the OMSs for practical applications. Traditional thermal activation methods involve harsh conditions, risking structural integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!