BACKGROUNDNovel biomarkers to identify infectious patients transmitting Mycobacterium tuberculosis are urgently needed to control the global tuberculosis (TB) pandemic. We hypothesized that proteins released into the plasma in active pulmonary TB are clinically useful biomarkers to distinguish TB cases from healthy individuals and patients with other respiratory infections.METHODSWe applied a highly sensitive non-depletion tandem mass spectrometry discovery approach to investigate plasma protein expression in pulmonary TB cases compared to healthy controls in South African and Peruvian cohorts. Bioinformatic analysis using linear modeling and network correlation analyses identified 118 differentially expressed proteins, significant through 3 complementary analytical pipelines. Candidate biomarkers were subsequently analyzed in 2 validation cohorts of differing ethnicity using antibody-based proximity extension assays.RESULTSTB-specific host biomarkers were confirmed. A 6-protein diagnostic panel, comprising FETUB, FCGR3B, LRG1, SELL, CD14, and ADA2, differentiated patients with pulmonary TB from healthy controls and patients with other respiratory infections with high sensitivity and specificity in both cohorts.CONCLUSIONThis biomarker panel exceeds the World Health Organization Target Product Profile specificity criteria for a triage test for TB. The new biomarkers have potential for further development as near-patient TB screening assays, thereby helping to close the case-detection gap that fuels the global pandemic.FUNDINGMedical Research Council (MRC) (MR/R001065/1, MR/S024220/1, MR/P023754/1, and MR/W025728/1); the MRC and the UK Foreign Commonwealth and Development Office; the UK National Institute for Health Research (NIHR); the Wellcome Trust (094000, 203135, and CC2112); Starter Grant for Clinical Lecturers (Academy of Medical Sciences UK); the British Infection Association; the Program for Advanced Research Capacities for AIDS in Peru at Universidad Peruana Cayetano Heredia (D43TW00976301) from the Fogarty International Center at the US NIH; the UK Technology Strategy Board/Innovate UK (101556); the Francis Crick Institute, which receives funding from UKRI-MRC (CC2112); Cancer Research UK (CC2112); and the NIHR Biomedical Research Centre of Imperial College NHS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141874 | PMC |
http://dx.doi.org/10.1172/jci.insight.173273 | DOI Listing |
Sci Rep
December 2024
Department of Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
Fluid administration is widely used to treat hypotension in patients undergoing veno-venous extracorporeal membrane oxygenation (VV-ECMO). However, excessive fluid administration may lead to fluid overload can aggravate acute respiratory distress syndrome (ARDS) and increase patient mortality, predicting fluid responsiveness is of great significance for VV-ECMO patients. This prospective single-center study was conducted in a medical intensive care unit (ICU) and finally included 51 VV-ECMO patients with ARDS in the prone position (PP).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated.
View Article and Find Full Text PDFNat Commun
December 2024
Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.
View Article and Find Full Text PDFAndrology
December 2024
Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy.
Background: Evidence indicates a wide range of andrological alterations in patients with the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection and Coronavirus Disease 2019 (COVID-19).
Aim: To provide an update on the andrological effects of SARS-CoV-2 infection and COVID-19.
Methods: PubMed/MEDLINE and Institutional websites were searched for randomized clinical trials, non-systematic reviews, systematic reviews, and meta-analyses.
J Neuroimaging
December 2024
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!