Settling Velocities of Small Microplastic Fragments and Fibers.

Environ Sci Technol

Chair of Water Quality Control, Technische Universität Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany.

Published: April 2024

There is only sparse empirical data on the settling velocity of small, nonbuoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9-289 μm) and five discrete length fractions (50-600 μm) of common nylon and polyester fibers are investigated, respectively. All settling experiments are carried out in quiescent water by using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g., thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003-9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle's terminal settling velocity are assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density, and shape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008250PMC
http://dx.doi.org/10.1021/acs.est.3c09602DOI Listing

Publication Analysis

Top Keywords

settling velocities
12
microplastic fragments
8
empirical data
8
settling velocity
8
microplastic particles
8
settling
6
velocities small
4
microplastic
4
small microplastic
4
fragments fibers
4

Similar Publications

Microplastics Settling in Turbid Water: Impacts of Sediments-Induced Flow Patterns on Particle Deposition Rates.

Environ Sci Technol

January 2025

Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland.

When microplastics (MPs) enter water bodies, they undergo various transport processes, including sedimentation, which can be influenced by factors such as particle size, density, and interactions with other particles. Surface waters contain suspended natural particles (e.g.

View Article and Find Full Text PDF

Concentrations of microplastics are both temporally and spatially variable in streamflow. Yet, an overwhelming number of published field studies do not target a range of flow conditions and fail to adequately capture particle transport within the full flow field. Since microplastic flux models rely on the representativeness of available data, current predictions of riverine exports contain substantial error.

View Article and Find Full Text PDF

Impact of Heterosigma akashiwo on the environmental behavior of microplastics: Aggregation, sinking, and resuspension dynamics.

J Hazard Mater

January 2025

Ecological Risk Research Department, KIOST, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

Aggregation processes of microalgae have significant effects on the vertical distribution of microplastics (MPs) in the marine environment. This study explored how the harmful microalga Heterosigma akashiwo affects the aggregation and sinking characteristics of four types of MPs: low and high-density polyethylene (PE) spheres, and small and large polypropylene (PP) fragments. The aggregation of MPs was primarily driven by extracellular polymeric substances (EPS) rather than direct attachment to the cells, contributing to their sinking.

View Article and Find Full Text PDF

Unraveling the mechanisms underlying AOM-induced deterioration of the settling performance of algal floc.

Water Res

January 2025

School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China. Electronic address:

The influence of algal organic matter (AOM) on the settling performance of algal flocs remains poorly understood. To address this, we employed fractionation techniques based on molecular weight to isolate different AOM fractions and analyzed their effects on floc structure and settling performance. This involved comparing the concentrations, compositions, potentials, and functional groups of organic matter before and after coagulation-sedimentation.

View Article and Find Full Text PDF

As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!