Type III porous liquids (PLs) consist of porous solid particles dispersed in a size-excluded liquid phase and are attracting much attention as novel media for applications such as gas separation. However, the effects of fundamental variables such as particle size on their physical properties are currently largely unknown. Here we study the effects of particle size in a series of porous liquids based on solid Al(OH)(fumarate) (a microporous metal-organic framework, MOF) with particle sizes of 60 nm, 200-600 nm, or 800-1000 dispersed in liquid polydimethylsiloxane (PDMS). Properties examined include physical stability of the dispersion, viscosity, total CO uptake, and kinetics of CO uptake. As expected, both physical stability and viscosity decreased with increasing particle size. Unexpectedly, total gravimetric gas uptake also varied with particle size, being greatest for the largest particles, which we ascribe to larger particles having a lower relative content of surface-bound FMA ligands. Various models for the gas uptake kinetic data were considered, specifically adsorption reaction models such as pseudo-first-order, pseudo-second-order, and Elovich models. In contrast to pure PDMS, which showed first-order kinetics, all PLs fit best to the Elovich model confirming that their uptake mechanism is more complex than for a simple liquid. Adsorption diffusion models, specifically Weber and Morris' intraparticle model and Boyd's model, were also applied which revealed a three-step process in which a combination of diffusion through a surface layer and intraparticle diffusion were rate-limiting. The rate of gas uptake follows the order PDMS < PL1 < PL2 < PL3, showing that the porous liquids take up gas more rapidly than does PDMS and that this rate increases with particle size. Overall, the study suggests that for high gas uptake and fast uptake kinetics, large particles may be preferred. Also, the fact that large particles resulted in low viscosity may be advantageous in reducing the pumping energy needed in flow separation systems. Therefore, the work suggests that finding ways to stabilize PLs with large particles against phase separation could be advantageous for optimizing the properties of PLs toward applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995940 | PMC |
http://dx.doi.org/10.1021/acsami.3c18998 | DOI Listing |
Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.
View Article and Find Full Text PDFSci Rep
December 2024
Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.
Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.
Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.
View Article and Find Full Text PDFFront Oncol
December 2024
Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, Hebei, China.
Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!