Portable Hydrogel Kits Made with Bimetallic Nanozymes for Point-of-Care Testing of Perfluorooctanesulfonate.

ACS Appl Mater Interfaces

College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China.

Published: April 2024

Perfluorooctanesulfonate (PFOS), an emerging organic contaminant, necessitates robust on-site detection strategies to safeguard human health and ecological balance. This study introduces a novel point-of-care testing (POCT) platform, combining a hydrogel kit with nanozymes and smartphone technology, for the highly sensitive detection of PFOS. The strategy utilizes copper-substituted cobalt-based Prussian blue analogue nanoboxes (CuCo-PBA NBs), which exhibit intricate hollow structures and remarkable peroxidase-like catalytic activity, efficiently catalyzing the oxidation of chromogenic substrates with hydrogen peroxide (HO). Density functional theory calculations elucidate the adsorption dynamics of HO on CuCo-PBA NBs, identifying the factors that improve the catalytic efficiency. The colorimetric POCT platform, integrating the hydrogel kit with a smartphone interface, demonstrates practical utility and achieves a detection limit of 1.43 × 10 mol L for PFOS. This research not only presents a new nanozyme design for PFOS detection in diverse matrices, such as lake water, whole blood, urine, and milk, but also paves the way for developing a portable and efficient POCT platform for a variety of emerging contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c00844DOI Listing

Publication Analysis

Top Keywords

poct platform
12
point-of-care testing
8
hydrogel kit
8
cuco-pba nbs
8
portable hydrogel
4
hydrogel kits
4
kits bimetallic
4
bimetallic nanozymes
4
nanozymes point-of-care
4
testing perfluorooctanesulfonate
4

Similar Publications

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Integrating commercial personal glucose meter with peroxidase-mimic DNAzyme to develop a versatile point-of-care biosensing platform.

Biosens Bioelectron

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The development of point-of-care testing (POCT) methods is highly desirable in molecular detection, as they enable disease diagnosis and biomarker monitoring on-site or at home. Repurposing existing POCT devices to detect diverse biomarkers is an economical way to develop new devices for POCT use. Personal glucose meter (PGM) is one of the most used off-the-shelf POCT devices that has been reused to detect non-glucose targets.

View Article and Find Full Text PDF

Biosynthetic small molecule antigens mimics medicated lateral flow immunoassay for mycotoxin Fumonisin B using nanobody fusion proteins.

J Hazard Mater

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; In Vitro Diagnostic Technology Innovation Center for Nanobody, No. 1166 Yiyuan Road, Nanchang, Jiangxi Province 330038, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Nanchang 330200, China. Electronic address:

Lateral flow immunoassays (LFAs) are widely used in point-of-care testing (POCT) for detecting small molecules. However, their application is often hindered by the complex synthesis of traditional chemically synthesized antigens. Nanobody-based coating antigen mimics have shown excellent analytical performance in various immunoassay platforms, but their application in LFAs still faces challenges.

View Article and Find Full Text PDF

A POCT assay based on commercial HCG strip for miRNA21 detection by integrating with RCA-HCR cascade amplification and CRISPR/Cas12a.

Mikrochim Acta

January 2025

Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.

A point-of-care testing (POCT) assay based on commercial HCG strip was proposed for miRNA21 detection by integrating RCA-HCR cascaded isothermal amplification with CRISPR/Cas12a. Three modules were integrated in the proposed platform: target amplification module composed of rolling circle amplification (RCA) cascaded with hybridization chain reaction (HCR), signal transduction module composed of CRISPR/Cas12a combined with HCG-agarose gel beads probes, and signal readout module composed of commercial HCG strips. The proposed RCA-HCR-CRISPR/Cas12a-HCG strip assay for miRNA21 detection had high sensitivity, and the limit of detection was as low as 37 fM.

View Article and Find Full Text PDF

Background: The early detection of Hepatocellular Carcinoma (HCC) is crucial for improving patient survival rates.Early diagnosis of HCC can significantly enhance treatment outcomes and reduce disease progression. Antigen detection of tumor markers is one of the important diagnostic methods for HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!