Ionizable lipid nanoparticles (LNPs) have emerged as a powerful tool for the intracellular delivery of nucleic acids. Following the recent success of LNP-based siRNA therapeutics and mRNA vaccines, the use of ionizable lipids for nucleic acid delivery has tremendously increased. Here, we introduce a flash nanoprecipitation (FNP) approach using the confined impingement (CIJ) mixer to stably self-assemble ionizable LNPs. To validate this approach, we employed three clinically relevant LNP formulations containing SM102, ALC0315, and DLin-MC3-DMA as ionizable lipids. FNP-assembled LNPs showed >95% encapsulation efficiency of mRNA and siRNA payloads and particle sizes below 150 nm. SM102 or ALC0315 LNPs demonstrated efficient delivery of mRNA into immune cells and to lymphoid organs , whereas Dlin-MC3-DMA LNPs allowed effective intracellular siRNA delivery with great functional ability. The FNP technique could economically produce LNPs in smaller volumes that are highly suitable for the discovery phase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040450 | PMC |
http://dx.doi.org/10.1039/d4nr00278d | DOI Listing |
Chem Biodivers
January 2025
Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China.
The widespread application of pyraclostrobin (PYR), an important strobilurin fungicide with low utilization efficiency, urgently requires optimization for sustainable agriculture. In this study, nanoformulated PYR with nano-iron bismuthide (FeBi) was successfully prepared via flash nanoprecipitation, yielding spherical PYR/FeBi nanoparticles (NPs, Φ120 nm) with stable drug loading capacity (67.9%) and controlled release.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India.
Zein, a plant-based protein obtained from the endosperm of corn ( L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
Cell state transitions are fundamental in biology, determining how cells respond to environmental stimuli and adapt to diseases and treatments. Cell surface-based sensing of geno/phenotypes is a versatile approach for distinguishing different cell types and states. Array-based biosensors can provide a highly sensitive platform for distinguishing cells based on the differential interactions of each sensing element with cell surface components.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Polymer semiconductors have attracted much attention for photocatalytic hydrogen evolution, but they typically exhibit micrometer-sized particles in water-suspension, causing severe loss in light absorption and exciton recombination. Here a molecular nanophotocatalyst featuring a donor-acceptor motif is presented that solution is processed via a facile stirring nanoprecipitation method assisted by hydrophilic surfactants, enabling an efficient quasi-homogenous hydrogen evolution. In contrast to the original bulk powder (heterogeneous system), these quasi-homogenous nanophotocatalysts exhibit significantly improved light-harvesting, water-wettability, and exciton dissociation, resulting in distinctly enhanced (by four-order-of-magnitude) photocatalytic hydrogen evolution rate.
View Article and Find Full Text PDFACS Appl Bio Mater
November 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Despite the recent advances and clinical demonstration of lipid nanoparticles (LNPs) for therapeutic and prophylactic applications, the extrahepatic delivery of nucleic acids remains a significant challenge in the field. This limitation arises from the rapid desorption of lipid-PEG in the bloodstream and clearance to the liver, which hinders extrahepatic delivery. In response, we explore the substitution of lipid-PEG with biodegradable block copolymers (BCPs), specifically poly(ε-caprolactone)--poly(ethylene glycol) (PCL--PEG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!