A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrostatic Potential Design of Solid Additives for Enhanced Molecular Order of Polymer Donor in Efficient Organic Solar Cells. | LitMetric

Polymeric semiconducting materials struggle to achieve fast charge mobility due to low structural order. In this work, five 1H-indene-1,3(2H)dione-benzene structured halogenated solid additives namely INB-5F, INB-3F, INB-1F, INB-1Cl, and INB-1Br with gradually varied electrostatic potential are designed and utilized to regulate the structural order of polymer donor PM6. Molecular dynamics simulations demonstrate that although the dione unit of these additives tends to adsorb on the backbone of PM6, the reduced electrostatic potential of the halogen-substituted benzene can shift the benzene interacting site from alkyl side chains to the conjugated backbone of PM6, not only leading to enhanced π-π stacking in out-of-plane but also arising new π-π stacking in in-plane together with the appearance of multiple backbone stacking in out-of-plane, consequent to the co-existence of face-on and edge-on molecular orientations. This molecular packing transformation further translates to enhanced charge transport and suppressed carrier recombination in their photovoltaics, with a maximum power conversion efficiency of 19.4% received in PM6/L8-BO layer-by-layer deposited organic solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202401050DOI Listing

Publication Analysis

Top Keywords

electrostatic potential
12
solid additives
8
order polymer
8
polymer donor
8
organic solar
8
solar cells
8
structural order
8
backbone pm6
8
π-π stacking
8
stacking out-of-plane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!