Context: Resveratrol (RV) is a natural compound found in grapes, wine, berries, and peanuts and has potential health benefits-namely, neurogenesis improvement. Neurogenesis, which is the process through which new neurons or nerve cells are generated in the brain, occurs in the subventricular zone and hippocampus and is influenced by various factors. RV has been shown to increase neural stem cell proliferation and survival, improving cognitive function in hippocampus-dependent tasks. Thus, to provide a convergent and unbiased conclusion of the available evidence on the correlation between the RV and neurogenesis, a systematic review needs to be undertaken meticulously and with appropriate attention.
Objective: This study aimed to systematically review any potential connection between the RV and neurogenesis in animal models.
Data Sources And Extraction: Based on the particular selection criteria, 8 original animal studies that investigated the relationship between RV and neurogenesis were included. Studies written in English and published in peer-reviewed journals with no restrictions on the starting date of publication on August 17, 2023, were searched in the Google Scholar and PubMed databases. Furthermore, data were extracted and analyzed independently by 2 researchers and then reviewed by a third researcher, and discrepancies were resolved by consensus. This project followed PRISMA reporting standards.
Data Analysis: In the studies analyzed in this review, there is a definite correlation between RV and neurogenesis, meaning that RV intake, irrespective of the mechanisms thereof, can boost neurogenesis in both the subventricular zone and hippocampus.
Conclusion: This finding, albeit with some limitations, provides a plausible indication of RV's beneficial function in neurogenesis. Indeed, RV intake may result in neurogenesis benefits-namely, cognitive function, mood regulation, stress resilience, and neuroprotection, potentially preventing cognitive decline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/nutrit/nuae025 | DOI Listing |
J Nutr
December 2024
Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. Electronic address:
Background: Food-derived nucleic acids exhibit various biological activities and may act as nutrients. Oral ingestion of the nucleic acid fraction (NAF) of salmon milt extract hydrolysates enhances cognitive function in mice although their active ingredients have not yet been identified, and detailed mechanisms of action are unknown.
Objective: To identify active ingredients enhancing cognitive function contained in the NAF and its possible underlying mechanism.
Netw Neurosci
December 2024
Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA.
Mammalian central nervous system (CNS) axons cannot spontaneously regenerate after injury, creating an unmet need to identify molecular regulators to promote axon regeneration and reduce the lasting impact of CNS injuries. While tubulin polymerization promoting protein family member 3 (Tppp3) is known to promote axon outgrowth in amphibians, its role in mammalian axon regeneration remains unknown. Here we investigated Tppp3 in retinal ganglion cells (RGCs) neuroprotection and axonal regeneration using an optic nerve crush (ONC) model in the rodent.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions.
View Article and Find Full Text PDFJ Oral Maxillofac Surg
December 2024
PhD Adjunct Professor, in Oral and Maxillofacial Surgery, School of Dentistry, University of Pernambuco - UPE, Recife, Pernambuco, Brazil. Electronic address:
Background: Fluoxetine, a serotonin reuptake inhibitor antidepressant, raises extracellular serotonin levels and promotes angiogenesis and neurogenesis. Numerous animal models have shown its beneficial effects on recovery from peripheral nerve injury.
Purpose: The primary objective of this study was to analyze the influence of fluoxetine on the sensory-motor function recovery of the sciatic nerve in Wistar rats after axonotmesis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!