A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Macrophage-modulating nanomedicine for cancer immunotherapy. | LitMetric

Macrophage-modulating nanomedicine for cancer immunotherapy.

Nanoscale

Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Published: April 2024

Tumor-associated macrophages (TAMs) play crucial roles in the immunosuppressive solid tumor microenvironment (TME). Despite their tumor-promoting functions, TAMs can also be therapeutically modulated to exhibit tumor-killing properties, making them attractive targets for tumor immunotherapy. This review highlights the recent advances in nanomedicine-based strategies centered around macrophages for enhanced cancer immunotherapy. Emerging nanomedicine-based strategies to modulate TAMs in cancer treatment include repolarization of the TAM phenotype, inhibition of monocyte recruitment, depletion of TAMs, and blockage of immune checkpoints. These strategies have shown great promise in significantly improving the efficacy of cancer immunotherapy. Moreover, macrophage-inspired drug delivery systems have demonstrated significant promise in inducing immunotherapeutic effects and enhancing therapeutic efficacy by facilitating evasion from the reticuloendothelial system and promoting accumulation at the tumor site. Finally, we also discuss the challenges and propose future opportunities associated with macrophage-modulating nanomedicine to enhance cancer immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr06333jDOI Listing

Publication Analysis

Top Keywords

cancer immunotherapy
16
macrophage-modulating nanomedicine
8
nanomedicine-based strategies
8
cancer
5
immunotherapy
5
nanomedicine cancer
4
immunotherapy tumor-associated
4
tumor-associated macrophages
4
tams
4
macrophages tams
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!