Exploring the Role of Ligand Connectivity in MOFs Mechanical Stability: The Case of MIL-100(Cr).

J Am Chem Soc

Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France.

Published: April 2024

AI Article Synopsis

  • This study investigates the mechanical stability of two metal-organic frameworks (MOFs), MIL-100(Cr) and MIL-101(Cr), focusing on how the type of linker (tritopic vs. ditopic) influences this stability.
  • Using advanced techniques like synchrotron X-ray diffraction and infrared spectroscopy, the researchers demonstrate that MIL-100(Cr) remains stable under high pressure while MIL-101(Cr) does not.
  • The superior stability of MIL-100(Cr) is attributed to its greater linker connectivity, which enhances the structural integrity of the material, providing insights for designing more resilient MOFs.

Article Abstract

The key parameters governing the mechanical stability of highly porous materials such as metal-organic frameworks (MOFs) are yet to be clearly understood. This study focuses on the role of the linker connectivity by investigating the mechanical stability of MIL-100(Cr), a mesoporous MOF with a hierarchical structure and a tritopic linker, and comparing it to MIL-101(Cr) having instead a ditopic linker. Using synchrotron X-ray diffraction and infrared spectroscopy, we investigate the high-pressure behavior of MIL-100(Cr) with both solid and fluid pressure transmitting media (PTM). In the case of a solid medium, MIL-100(Cr) undergoes amorphization at about 0.6 GPa, while silicone oil as a PTM delays amorphization until 12 GPa due to the fluid penetration into the pores. Both of these values are considerably higher than those of MIL-101(Cr). MIL-100(Cr) also exhibits a bulk modulus almost ten times larger than that of MIL-101(Cr). This set of results coherently proves the superior stability of MIL-100(Cr) under compression. We ascribe this to the higher connectivity of the organic linker in MIL-100(Cr), which enhances its interconnection between the metal nodes. These findings shed light on the importance of linker connectivity in the mechanical stability of MOFs, a relevant contribution to the quest for designing more robust MOFs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c14589DOI Listing

Publication Analysis

Top Keywords

mechanical stability
16
linker connectivity
8
stability mil-100cr
8
amorphization gpa
8
mil-100cr
7
stability
5
linker
5
exploring role
4
role ligand
4
connectivity
4

Similar Publications

Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles.

J Mater Sci Mater Med

January 2025

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.

View Article and Find Full Text PDF

Polyhydroxy starch with abundant hydroxyls and a unique structure enables uniform Zn deposition.

Chem Commun (Camb)

January 2025

Laboratory of Advanced Materials, Aqueous Batteries Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.

Zinc metal is a promising anode material for zinc-ion batteries (ZIBs), but severe side reactions and dendrite formation hinder its commercialization. In this study, starch is introduced into the ZnSO electrolyte for stabilizing the Zn anode. With abundant hydroxyl groups, starch can reconstruct the H-bond system in the electrolyte, suppressing side reactions.

View Article and Find Full Text PDF

This study explores the use of chicken egg white (EW), a rich source of natural proteins, to address challenges in wound healing management. Herein, a novel Zn-infused EW/GelMA (EW/Gel) hybrid hydrogel is developed, featuring an interpenetrating network (IPN) structure, where the first network consists of photo-cross-linked GelMA and the second network consists of Zn-infused EW (Zn-EW) through ion-protein binding. By optimizing the design and formulation, the resulting Zn-EW/Gel hydrogel exhibited enhanced mechanical stability and self-adhesive properties.

View Article and Find Full Text PDF

Dry powders offer the potential to increase stability and reduce cold-chain requirements associated with the distribution of vaccines and other thermally sensitive products. The Alberta Idealized Nasal Inlet (AINI) is a representative geometry for characterization of nasal products that may prove useful in examining intranasal delivery of powders. Spray-dried trehalose powders were loaded at 10, 20, and 40 mg doses into active single-dose devices.

View Article and Find Full Text PDF

Background: Wider step width and lower step-to-step variability are linked to improved gait stability and reduced fall risk. It is unclear if patients with spinocerebellar ataxia (SCA) can learn to adjust these aspects of gait to reduce fall risk.

Objectives: The aims were to examine the possibility of using wearable step width haptic biofeedback to enhance gait stability and reduce fall risk in individuals with SCA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!