cFLIP - An interacting partner and a novel substrate for pro-apoptotic serine protease HtrA2.

Biochem Biophys Rep

Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, 410210, India.

Published: July 2024

Background: HtrA2, a pro-apoptotic protease, plays a crucial role in apoptosis by cleaving inhibitory and anti-apoptotic proteins by translocating from mitochondria to the cytosol. Prior studies in ischemic cells have indicated that cytosolic HtrA2 triggers cFLIP degradation, plausibly through direct interaction. In this study, we have characterized the cFLIP protein, validated its interaction with HtrA2, and demonstrated that cFLIP is also a substrate of HtrA2.

Methods: We have identified the probable cleavage sites of cFLIP through gel-based assays and mass spectrometric analysis of the cleaved fragments.

Results: Our findings shed light on a key protein-protein interaction involving pro-apoptotic HtrA2, confirming cFLIP as its interacting partner and substrate.

Conclusion: Understanding the nuances of HtrA2's interaction with cFLIP (a decoy protein of the initiator procaspase-8 in the extrinsic apoptotic pathway) and deciphering the cFLIP's mode of cleavage, would provide an excellent alternative to modulate the pathway for therapeutic benefits toward diseases like ischemia and cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950699PMC
http://dx.doi.org/10.1016/j.bbrep.2024.101682DOI Listing

Publication Analysis

Top Keywords

cflip interacting
8
interacting partner
8
cflip
7
htra2
5
partner novel
4
novel substrate
4
substrate pro-apoptotic
4
pro-apoptotic serine
4
serine protease
4
protease htra2
4

Similar Publications

Introduction: Triple-negative breast cancer (TNBC) has a high mortality rate and limited treatment options. Tetrahydrocurcumin (THC), a major metabolite of curcumin, has potential antitumor activities. However, the antitumor effects and mechanism of THC in TNBC remain elusive.

View Article and Find Full Text PDF

cFLIP, a master anti-apoptotic regulator, targets the FADD-induced DED complexes of procaspase-8 in death receptor and ripoptosome signaling pathways. Several tumor cells maintain relatively high levels of cFLIP in achieving their immortality. However, understanding the three-dimensional regulatory mechanism initiated or mediated by elevated levels of cFLIP has been limited by the absence of the atomic coordinates for cFLIP-induced DED complexes.

View Article and Find Full Text PDF

Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy with poor survival rates. The efficacy of radiotherapy in ATL needs enhancement with radiosensitizing agents. This study investigated whether umbelliprenin (UMB) could improve the therapeutic effects of ionizing radiation (IR) in ATL cells.

View Article and Find Full Text PDF

Regulated cell death in response to microbial infection plays an important role in immune defense and is triggered by pathogen disruption of essential cellular pathways. Gram-negative bacterial pathogens in the Yersinia genus disrupt NF-κB signaling via translocated effectors injected by a type III secretion system, thereby preventing induction of cytokine production and antimicrobial defense. In murine models of infection, Yersinia blockade of NF-κB signaling triggers cell-extrinsic apoptosis through Receptor Interacting Serine-Threonine Protein Kinase 1 (RIPK1) and caspase-8, which is required for bacterial clearance and host survival.

View Article and Find Full Text PDF

RIPK1 is dispensable for cell death regulation in β-cells during hyperglycemia.

Mol Metab

September 2024

Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany. Electronic address:

Objective: Receptor-interacting protein kinase 1 (RIPK1) orchestrates the decision between cell survival and cell death in response to tumor necrosis factor (TNF) and other cytokines. Whereas the scaffolding function of RIPK1 is crucial to prevent TNF-induced apoptosis and necroptosis, its kinase activity is required for necroptosis and partially for apoptosis. Although TNF is a proinflammatory cytokine associated with β-cell loss in diabetes, the mechanism by which TNF induces β-cell demise remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!