Increased aortic and carotid stiffness are independent predictors of adverse cardiovascular events. Arterial stiffness is not uniform across the arterial tree and its accurate assessment is challenging. The complex interactions and influence of aortic stiffness on carotid stiffness have not been investigated. The aim of this study was to evaluate the effect of aortic stiffness on carotid stiffness under physiological pressure conditions. A realistic patient-specific geometry was used based on magnetic resonance images obtained from the OsiriX library. The luminal aortic-carotid model was reconstructed from magnetic resonance images using 3D Slicer. A series of aortic stiffness simulations were performed at different regional aortic areas (levels). By applying variable Young's modulus to the aortic wall under two pulse pressure conditions, one could examine the deformation, compliance and von Mises stress between the aorta and carotid arteries. An increase of Young's modulus in an aortic area resulted in a notable difference in the mechanical properties of the aortic tree. Regional deformation, compliance and von Mises stress changes across the aorta and carotid arteries were noted with an increase of the aortic Young's modulus. Our results indicate that increased carotid stiffness may be associated with increased aortic stiffness. Large-scale clinical validation is warranted to examine the influence of aortic stiffness on carotid stiffness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951721PMC
http://dx.doi.org/10.1098/rsos.230264DOI Listing

Publication Analysis

Top Keywords

aortic stiffness
24
carotid stiffness
24
stiffness carotid
16
stiffness
13
influence aortic
12
aorta carotid
12
young's modulus
12
aortic
11
carotid
9
increased aortic
8

Similar Publications

Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].

View Article and Find Full Text PDF

Background: Stiffening of the large arteries is a hallmark feature of vascular aging and is associated with cognitive impairment and Alzheimer's disease pathology. Increased large artery stiffness leads to higher-than-normal pulse pressure in the cerebral circulation, damaging endothelial cells. It is known that short-term exposure to stiffer large arteries causes cerebral artery endothelial dysfunction and hypoperfusion in young mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: In humans, larger artery stiffening is associated with increased tau phosphorylation and neurodegeneration. However, because arterial stiffness often co-occurs with other age-related conditions like hypertension, atherosclerosis, and diabetes, it is nearly impossible to distill the underlying mechanisms specifically linking arterial stiffening to abnormal brain function. We leveraged a surgical mouse model of larger artery stiffening and used it concurrently with a transgenic Alzheimer's disease (AD) mouse model of tau pathology to investigate the impact of larger artery stiffening on cognition.

View Article and Find Full Text PDF

Background: Elevated arterial pulse pressure (PP) is associated with cognitive decline and Alzheimer's disease (AD). High PP damages the brain vasculature by causing endothelial cell dysfunction. Stiffer cerebral arteries have an impaired ability to dampen PP, which transmits the pulsatility further into the microvasculature, where it can damage brain tissue.

View Article and Find Full Text PDF

Background: Early vascular aging (EVA), manifesting as increases in central arterial stiffness and BP, is associated with cognitive impairment in humans. EVA and cognitive impairment occurs in Dahl salt-sensitive (DSS) rats consuming a normal salt (NS) diet with an advancing age. Quercetin (QRC), a flavonoid with anti-oxidant, anti-inflammatory and senolytic properties, previously shown to reduce salt-sensitive hypertension in DSS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!