Tuberculosis, malaria, and HIV are among the most lethal diseases, with AIDS (Acquired Immune Deficiency Syndrome) being a chronic and potentially life-threatening condition caused by the human immunodeficiency virus (HIV). Individually, each of these infections presents a significant health challenge. However, when tuberculosis, malaria, and HIV co-occur, the symptoms can worsen, leading to an increased mortality risk. Mathematical models have been created to study coinfections involving tuberculosis, malaria, and HIV. This systematic literature review explores the importance of coinfection models by examining articles from reputable databases such as Dimensions, ScienceDirect, Scopus, and PubMed. The primary emphasis is on investigating coinfection models related to tuberculosis, malaria, and HIV. The findings demonstrate that each article thoroughly covers various aspects, including model development, mathematical analysis, sensitivity analysis, optimal control strategies, and research discoveries. Based on our comprehensive evaluation, we offer valuable recommendations for future research efforts in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951863 | PMC |
http://dx.doi.org/10.2147/JMDH.S446508 | DOI Listing |
Cancer Commun (Lond)
January 2025
Mortality, Health and Epidemiology Department, Institute for Demographic Studies (Ined), Aubervilliers, France.
Genes (Basel)
January 2025
Department of Pathology, Genetics and Evolution, Federal University of Triângulo Mineiro, Uberaba 38025-180, Brazil.
Background/objectives: Pharmacogenetics (PGx) aims to identify individuals more likely to suffer from adverse reactions or therapeutic failure in drug treatments. However, despite most of the evidence in this area being from European populations, some diseases have also been neglected, such as HIV infection, malaria, and tuberculosis. With this review, we aim to emphasize which pharmacogenetic tests are ready to be implemented in treating neglected diseases that have some evidence and call attention to what is missing for these three diseases.
View Article and Find Full Text PDFLancet Child Adolesc Health
February 2025
Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Tygerberg, South Africa.
Background: There are few data on the treatment of children and adolescents with multidrug-resistant (MDR) or rifampicin-resistant (RR) tuberculosis, especially with more recently available drugs and regimens. We aimed to describe the clinical and treatment characteristics and their associations with treatment outcomes in this susceptible population.
Methods: We conducted a systematic review and individual participant data meta-analysis.
PLoS One
January 2025
School of Health Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.
Objective: For more than a century, developing novel and effective vaccines against malaria and Tuberculosis (TB) infections has been a challenge. This review sought to investigate the reasons for the slow progress of malaria and TB vaccine candidates in sub-Saharan African clinical trials.
Methods: The systematic review protocol was registered on PROSPERO on July 26, 2023 (CRD42023445166).
Trop Med Infect Dis
December 2024
School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia.
Background: Drug-resistant tuberculosis (DR-TB) remains a major public health challenge in China, with varying treatment outcomes across different regions. Understanding the spatial distribution of DR-TB treatment outcomes is crucial for targeted interventions to improve treatment success in high-burden areas such as Hunan Province. This study aimed to map the spatial distribution of DR-TB treatment outcomes at a local level and identify sociodemographic and environmental factors associated with poor treatment outcomes in Hunan Province, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!