To overcome the physical barriers caused by light diffraction, super-resolution techniques are often applied in fluorescence microscopy. State-of-the-art approaches require specific and often demanding acquisition conditions to achieve adequate levels of both spatial and temporal resolution. Analyzing the stochastic fluctuations of the fluorescent molecules provides a solution to the aforementioned limitations, as sufficiently high spatio-temporal resolution for live-cell imaging can be achieved using common microscopes and conventional fluorescent dyes. Based on this idea, we present COL0RME, a method for covariance-based super-resolution microscopy with intensity estimation, which achieves good spatio-temporal resolution by solving a sparse optimization problem in the covariance domain and discuss automatic parameter selection strategies. The method is composed of two steps: the former where both the emitters' independence and the sparse distribution of the fluorescent molecules are exploited to provide an accurate localization; the latter where real intensity values are estimated given the computed support. The paper is furnished with several numerical results both on synthetic and real fluorescence microscopy images and several comparisons with state-of-the art approaches are provided. Our results show that COL0RME outperforms competing methods exploiting analogously temporal fluctuations; in particular, it achieves better localization, reduces background artifacts, and avoids fine parameter tuning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951805PMC
http://dx.doi.org/10.1017/S2633903X22000010DOI Listing

Publication Analysis

Top Keywords

super-resolution microscopy
8
intensity estimation
8
fluorescence microscopy
8
fluorescent molecules
8
spatio-temporal resolution
8
col0rme super-resolution
4
microscopy
4
microscopy based
4
based sparse
4
sparse blinking/fluctuating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!