The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951082PMC
http://dx.doi.org/10.3389/fgene.2024.1374860DOI Listing

Publication Analysis

Top Keywords

long read
8
read sequencing
8
genetic
8
genetic diseases
8
genetic medicine
8
resolution sensitivity
8
genomic regions
8
genes highly
8
highly homologous
8
homologous pseudogenes
8

Similar Publications

Healthcare utilization and costs for patients with Parkinson's disease in Taiwan.

BMC Neurol

January 2025

Department of Public Health, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.

Background: Parkinson's disease (PD) exerts a considerable burden on the elderly. Studies on long-term costs for Parkinson's disease patients in Taiwan are not available.

Objectives: This study aims to examine the medical resource utilization and medical costs including drug costs for PD patients in Taiwan over up to 15 years of follow-up.

View Article and Find Full Text PDF

Aberrant immune responses to viral pathogens contribute to pathogenesis, but our understanding of pathological immune responses caused by viruses within the human virome, especially at a population scale, remains limited. We analyzed whole-genome sequencing datasets of 6,321 Japanese individuals, including patients with autoimmune diseases (psoriasis vulgaris, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), pulmonary alveolar proteinosis (PAP) or multiple sclerosis) and coronavirus disease 2019 (COVID-19), or healthy controls. We systematically quantified two constituents of the blood DNA virome, endogenous HHV-6 (eHHV-6) and anellovirus.

View Article and Find Full Text PDF

A male in his 20s presented with episodic headache and subsequently developed episodic unilateral weakness, dysphasia and encephalopathy. These paroxysmal episodes persisted over time with the development of background cognitive impairment and neuropsychiatric symptoms. MRI surveillance demonstrated progressive T2 hyperintensity with focal cortical oedema correlating to symptoms observed during clinical episodes.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Diseases that affect the vascular system or the pith are of great economic impact since they can rapidly destroy the affected plants, leading to complete loss in production. Fast and precise identification is thus important to inform containment and management, but many identification methods are slow because they are culture-dependent and they do not reach strain resolution. Here we used culture-independent long-read metagenomic sequencing of DNA extracted directly from stems of two tomato samples that displayed wilt symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!