Nuclear factor kappa B (NF-κB) plays a pivotal role in the development of pancreatic cancer, and its phosphorylation has previously been linked to the regulation of NUAK2. However, the regulatory connection between NF-κB and NUAK2, as well as NUAK2's role in pancreatic cancer, remains unclear. In this study, we observed that inhibiting NUAK2 impeded the proliferation, migration, and invasion of pancreatic cancer cells while triggering apoptosis. NUAK2 overexpression partially resisted apoptosis and reversed the inhibitory effects of the NF-κB inhibitor. NF-κB transcriptionally regulated NUAK2 transcription by binding to the promoter region of NUAK2. Mechanistically, NUAK2 knockdown remarkably reduced the expression levels of -SMAD2/3 and SMAD2/3, resulting in decreased nuclear translocation of SMAD4. In SMAD4-negative cells, NUAK2 knockdown impacted FAK signaling by downregulating SMAD2/3. Moreover, NUAK2 knockdown heightened the sensitivity of pancreatic cancer cells to gemcitabine, suggesting that NUAK2 inhibitors could be a promising strategy for pancreatic cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951638 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.109406 | DOI Listing |
Front Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDFJCO Oncol Adv
December 2024
Department of Surgery, Oregon Health & Science University, Portland, OR.
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths with a 5-year survival rate of 13%. Surgical resection remains the only curative option as systemic therapies offer limited benefit. Poor response to chemotherapy and immunotherapy is due, in part, to the dense stroma and heterogeneous tumor microenvironment (TME).
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China.
Background: Prostate cancer (PCa) ranks as the second leading cause of cancer-related mortality among men. Long non-coding RNAs (lncRNAs) are known to play a regulatory role in the development of various human cancers. LncRNA MAFG-divergent transcript (MAFG-DT) was reported to play a crucial role in tumor progression of multiple human cancers, such as pancreatic cancer, colorectal cancer, bladder cancer, and gastric cancer.
View Article and Find Full Text PDFJ Natl Cancer Cent
December 2024
Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, and Department of Orthopaedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Bone marrow is pivotal for normal hematopoiesis and immune responses, yet it is often compromised by malignancies. The bone microenvironment (BME), composed of bone and immune cells, maintains skeletal integrity and blood production. The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality.
View Article and Find Full Text PDFBME Front
December 2024
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Deep-tissue solid cancer treatment has a poor prognosis, resulting in a very low 5-year patient survival rate. The primary challenges facing solid tumor therapies are accessibility, incomplete surgical removal of tumor tissue, the resistance of the hypoxic and heterogeneous tumor microenvironment to chemotherapy and radiation, and suffering caused by off-target toxicities. Here, sonodynamic therapy (SDT) is an evolving therapeutic approach that uses low-intensity ultrasound to target deep-tissue solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!