A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using biochar for environmental recovery and boosting the yield of valuable non-food crops: The case of hemp in a soil contaminated by potentially toxic elements (PTEs). | LitMetric

Hemp ( L.) is known to tolerate high concentrations of soil contaminants which however can limit its biomass yield. On the other hand, organic-based amendments such as biochar can immobilize soil contaminants and assist hemp growth in soils contaminated by potentially toxic elements (PTEs), allowing for environmental recovery and income generation, e.g. due to green energy production from plant biomass. The aim of this study was therefore to evaluate the suitability of a softwood-derived biochar to enhance hemp growth and promote the assisted phytoremediation of a PTE-contaminated soil (i.e., Sb 2175 mg kg; Zn 3149 mg kg; Pb 403 mg kg; and Cd 12 mg kg). Adding 3% (w/w) biochar to soil favoured the reduction of soluble and exchangeable PTEs, decreased soil dehydrogenase activity (by ∼2.08-fold), and increased alkaline phosphomonoesterase and urease activities, basal respiration and soil microbial carbon (by ∼1.18-, 1.22-, 1.22-, and 1.66-fold, respectively). Biochar increased the abundance of selected soil culturable microorganisms, while amplicon sequencing analysis showed a positive biochar impact on α-diversity and the induction of structural changes on soil bacterial community structure. Biochar did not affect root growth of hemp but significantly increased its aboveground biomass by ∼1.67-fold for shoots, and by ∼2-fold for both seed number and weight. Biochar increased the PTEs phytostabilisation potential of hemp with respect to Cd, Pb and Zn, and also stimulated hemp phytoextracting capacity with respect to Sb. Overall, the results showed that biochar can boost hemp yield and its phytoremediation effectiveness in soils contaminated by PTEs providing valuable biomass that can generate profit in economic, environmental and sustainability terms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951655PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28050DOI Listing

Publication Analysis

Top Keywords

biochar
9
soil
9
environmental recovery
8
hemp
8
contaminated toxic
8
toxic elements
8
elements ptes
8
soil contaminants
8
hemp growth
8
soils contaminated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!