Latest studies indicated that agro-food wastes are considered renewable sources of bioactive compounds. This investigation aimed to utilize natural extracts of citrus peels as antimicrobial and anti-aflatoxigenic agents for food safety. The bioactivity of two citrus peels was assessed by total phenolic, flavonoids, and antioxidant activity. Nanoemulsions were manufactured using high-speed homogenization. The mean particle size of the nanoemulsions ranged from 29.41 to 66.41 nm with a polydispersity index of 0.11-0.16. The zeta potential values ranged from -14.27 to -26.74 mV, indicating stability between 81.44% and 99.26%. The orange peel extract showed the highest contents of total phenolic and flavonoids compared to the other extracts and nanoemulsions (39.54 mg GAE/g and 79.54 mg CE/100 g, respectively), which agreed with its potential antioxidant activity performed by DPPH free radical-scavenging and ABTS assays. Chlorogenic, caffeic, ferulic, and catechin were the dominant phenolic acids in the extracts and nanoemulsions, while quercitrin, rutin, and hesperidin were the most abundant flavonoids. Limonene was the major volatile component in both oils; however, it was reduced dramatically from 92.52% to 76.62% in orange peel oil and from 91.79 to 79.12% in tangerine peel oil. Consistent with the differences in phenolics, flavonoids, and volatiles between orange and tangerine peel extracts, the antibacterial properties of orange extracts had more potential than tangerine ones. Gram-positive bacteria were more affected by all the examined extracts than Gram-negative ones. The antifungal activity of orange extract and nanoemulsion on seven fungal strains from spp had more potential than tangerine extracts. Additionally, using a simulated media, the orange peel extract and its nanoemulsion had a more anti-aflatoxigenic influence. Molecular docking confirmed the high inhibitory action of flavonoids, especially hesperidin, on the polyketide synthase (-9.3 kcal/mol) and cytochrome P450 monooxygenase (-10.1 kcal/mol) key enzymes of the aflatoxin biosynthetic mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950677 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e27737 | DOI Listing |
Phytochem Anal
December 2024
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
Introduction: Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. The quality of CRP can be affected by various factors, which are closely related to the metabolite composition of CRP.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
NPRL, Department of Pharmacognosy, Faculty of Pharmacy Gomal University Dera Ismail Khan Khyber Pakhtunkhwa Pakistan.
Advance glycation end products (AGEs) are the main reason for diabetic complications. Persistent hyperglycemia and non-enzymatic glycation increase the rate of AGEs formation. Natural functional food-based approaches are mainly under investigation these days to discover new treatment options.
View Article and Find Full Text PDFpeels are rich in bioactive phenolic compounds with various health effects including antioxidant, antiobesity, antiinflammatory, antihypertensive, antihypercholesterolemic, antimicrobial, antidiabetic, and anticarcinogenic activities. Both extractable and nonextractable phenolics are present in significant amounts in peel with diverse bioactivities. While extractable phenolics can be recovered from the fruit peels by conventional extraction methods, nonextractable phenolics remaining in the residues must be released from the cell matrix first by hydrolysis with acid, alkali, or enzymes.
View Article and Find Full Text PDFJ Pharm Biomed Anal
December 2024
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China. Electronic address:
Huo-Xiang-Zheng-Qi Mixture is a renowned traditional Chinese medicine formula used to treat ailments associated with dampness pathogens. This study employed ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to perform a comprehensive qualitative and quantitative analysis of the chemical compounds in Huo-Xiang-Zheng-Qi Mixture. A total of 155 compounds were identified, including 61 flavonoids and their glycosides, 36 phenylethanoid glycosides, 23 saponins, 14 coumarins, 9 organic acids, 1 amino acid, 2 nucleosides and purines, and 9 additional compounds.
View Article and Find Full Text PDFFront Plant Sci
December 2024
National Navel Orange Engineering Research Center, School of Life Sciences, Gannan Normal University, Ganzhou, China.
Gannan is the largest navel orange production area in China. Most studies have primarily focused on the effects of either soil or topographic factors on the quality of navel oranges. However, there has been a lack of research exploring the relationship between navel orange quality and multiple environmental factors (meteorological, topographic, and soil).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!