Background: Plants mediate several defense mechanisms to withstand abiotic stresses. Several gene families respond to stress as well as multiple transcription factors to minimize abiotic stresses without minimizing their effects on performance potential. RNA helicase (RH) is one of the foremost critical gene families that can play an influential role in tolerating abiotic stresses in plants. However, little knowledge is present about this protein family in rapeseed (canola). Here, we performed a comprehensive survey analysis of the RH protein family in rapeseed (Brassica napus L.).
Results: A total of 133 BnRHs genes have been discovered in this study. By phylogenetic analysis, RHs genes were divided into one main group and a subgroup. Examination of the chromosomal position of the identified genes showed that most of the genes (27%) were located on chromosome 3. All 133 identified sequences contained the main DEXDC domain, the HELICC domain, and a number of sub-domains. The results of biological process studies showed that about 17% of the proteins acted as RHs, 22% as ATP binding, and 14% as mRNA binding. Each part of the conserved motifs, communication network, and three-dimensional structure of the proteins were examined separately. The results showed that the RWC in leaf tissue decreased with higher levels of drought stress and in both root and leaf tissues sodium concentration was increased upon increased levels of salt stress treatments. The proline content were found to be increased in leaf and root with the increased level of stress treatment. Finally, the expression patterns of eight selected RHs genes that have been exposed to drought, salinity, cold, heat and cadmium stresses were investigated by qPCR. The results showed the effect of genes under stress. Examination of gene expression in the Hayola #4815 cultivar showed that all primers except primer #79 had less expression in both leaves and roots than the control level.
Conclusions: New finding from the study have been presented new insights for better understanding the function and possible mechanism of RH in response to abiotic stress in rapeseed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953219 | PMC |
http://dx.doi.org/10.1186/s12870-024-04893-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!