Purpose: This study aimed to clarify the effects of surface modification of titanium (Ti) implants by low-temperature atmospheric pressure plasma treatment on wound healing and cell attachment for biological sealing in peri-implant soft tissue.
Methods: Hydrophilization to a Ti disk using a handheld low-temperature atmospheric pressure plasma device was evaluated by a contact angle test and compared with an untreated group. In in vivo experiments, plasma-treated pure Ti implants using a handheld plasma device (experimental group: PL) and untreated implants (control group: Cont) were placed into the rat upper molar socket, and samples were harvested at 3, 7 and 14 days after surgery. Histological evaluation was performed to assess biological sealing, collagen- and cell adhesion-related gene expression by reverse transcription quantitative polymerase chain reaction, collagen fiber detection by Picrosirius Red staining, and immunohistochemistry for integrins.
Results: In in vivo experiments, increased width of the peri-implant connective tissue (PICT) and suppression of epithelial down growth was observed in PL compared with Cont. In addition, high gene expression of types I and XII collagen at 7 days and acceleration of collagen maturation was recognized in PL. Strong immunoreaction of integrin α2, α5, and β1 was observed at the implant contact area of PICT in PL.
Conclusions: The handheld low-temperature atmospheric pressure plasma device provided hydrophilicity on the Ti surface and maintained the width of the contact area of PICT to the implant surface as a result of accelerated collagen maturation and fibroblast adhesion, compared to no plasma application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954594 | PMC |
http://dx.doi.org/10.1186/s40729-024-00524-3 | DOI Listing |
Adv Sci (Weinh)
January 2025
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03823, USA.
Fishes and aquatic invertebrates utilize acoustic particle motion for hearing, and some additionally detect sound pressure. Yet, few underwater soundscapes studies report particle motion, which is often assumed to scale predictably with pressure in offshore habitats. This relationship does not always exist for low frequencies or near reflective boundaries.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
Ignition of the lubricating fluid in a mechanical system is a highly undesirable and unsafe condition that can arise from the elevated temperatures and pressures to which the lubricant is subjected. It is therefore important to understand the fundamental chemistry behind its ignition to predict and prevent this condition. Lubricating oils, particularly those with a mineral oil base, are very complex mixtures of thousands of hydrocarbons.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
The global increase in urolithiasis prevalence has led to a shift towards minimally invasive procedures, such as retrograde intrarenal surgery, supported by advancements in laser technologies for lithotripsy. Pulsed lasers, particularly the holmium YAG and the newer thulium fiber laser, have significantly transformed the management of upper urinary tract stones. However, the use of high-power lasers in these procedures introduces risks of heat-related injury.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!