Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane.

Nat Commun

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.

Published: March 2024

Achieving high selectivity of Li and Mg is of paramount importance for effective lithium extraction from brines, and nanofiltration (NF) membrane plays a critical role in this process. The key to achieving high selectivity lies in the on-demand design of NF membrane pores in accordance with the size difference between Li and Mg ions, but this poses a huge challenge for traditional NF membranes and difficult to be realized. In this work, we report the fabrication of polyamide (PA) NF membranes with ultra-high Li/Mg selectivity by modifying the interfacial polymerization (IP) process between piperazine (PIP) and trimesoyl chloride (TMC) with an oil-soluble surfactant that forms a monolayer at oil/water interface, referred to as OSARIP. The OSARIP benefits to regulate the membrane pores so that all of them are smaller than Mg ions. Under the solely size sieving effect, an exceptional Mg rejection rate of over 99.9% is achieved. This results in an exceptionally high Li/Mg selectivity, which is one to two orders of magnitude higher than all the currently reported pressure-driven membranes, and even higher than the microporous framework materials, including COFs, MOFs, and POPs. The large enhancement of ion separation performance of NF membranes may innovate the current lithium extraction process and greatly improve the lithium extraction efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954764PMC
http://dx.doi.org/10.1038/s41467-024-46887-4DOI Listing

Publication Analysis

Top Keywords

lithium extraction
12
achieving high
8
high selectivity
8
membrane pores
8
li/mg selectivity
8
selectivity
5
extreme li-mg
4
li-mg selectivity
4
selectivity precise
4
precise ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!