Rationale And Objectives: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to explore the effectiveness of using radiomics and machine learning on multiparametric magnetic resonance imaging (MRI) to differentiate between MB and EM and validate its diagnostic ability with an external set.
Materials And Methods: Axial T2 weighted image (T2WI) and contrast-enhanced T1weighted image (CE-T1WI) MRI sequences of 135 patients from two centers were collected as train/test sets. Volume of interest (VOI) was manually delineated by an experienced neuroradiologist, supervised by a senior. Feature selection analysis and the least absolute shrinkage and selection operator (LASSO) algorithm identified valuable features, and Shapley additive explanations (SHAP) evaluated their significance. Five machine-learning classifiers-extreme gradient boosting (XGBoost), Bernoulli naive Bayes (Bernoulli NB), Logistic Regression (LR), support vector machine (SVM), linear support vector machine (Linear SVC) classifiers were built based on T2WI (T2 model), CE-T1WI (T1 model), and T1 + T2WI (T1 + T2 model). A human expert diagnosis was developed and corrected by senior radiologists. External validation was performed at Sun Yat-Sen University Cancer Center.
Results: 31 valuable features were extracted from T2WI and CE-T1WI. XGBoost demonstrated the highest performance with an area under the curve (AUC) of 0.92 on the test set and maintained an AUC of 0.80 during external validation. For the T1 model, XGBoost achieved the highest AUC of 0.85 on the test set and the highest accuracy of 0.71 on the external validation set. In the T2 model, XGBoost achieved the highest AUC of 0.86 on the test set and the highest accuracy of 0.82 on the external validation set. The human expert diagnosis had an AUC of 0.66 on the test set and 0.69 on the external validation set. The integrated T1 + T2 model achieved an AUC of 0.92 on the test set, 0.80 on the external validation set, achieved the best performance. Overall, XGBoost consistently outperformed in different classification models.
Conclusion: The combination of radiomics and machine learning on multiparametric MRI effectively distinguishes between MB and EM in childhood, surpassing human expert diagnosis in training and testing sets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2024.02.040 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, Peking University First Hospital, Beijing, 100034, China.
Objectives: To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.
Methods: A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance.
Radiology
January 2025
From the Department of Cardiology (T.P., K.H., T.G., A.L., E.G., A.U., J.G.D., P.H.), MIRACL.ai (Multimodality Imaging for Research and Analysis Core Laboratory: and Artificial Intelligence) (T.P., S.T., K.H., T.G., A.L., E.G., A.U., J.G.D., P.H.), Inserm MASCOT-UMRS 942 (T.P., K.H., T.A.S., T.G., A.L., E.G., A.U., J.G.D., P.H.), and Department of Radiology (T.P., V.B., L.H., T.G.), Université Paris Cité, University Hospital of Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; Cardiovascular Magnetic Resonance Laboratory (T.P., T.H., T.U., F.S., S.C., P.G., J.G.) and Cardiac Computed Tomography Laboratory (T.P., T.H., T.L., B.C., T.U., F.S., S.C., H.B., A.N., M.A., P.G., J.G.), Hôpital Privé Jacques Cartier, Institut Cardiovasculaire Paris Sud, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300 Massy, France; Scientific Partnerships, Siemens Healthcare France, Saint-Denis, France (S.T.); Department of Cardiology, Hôpital Universitaire de Bruxelles-Hôpital Erasme, Brussels, Belgium (A.U.); and Department of Cardiovascular Imaging, American Hospital of Paris, Neuilly, France (O.V., M.S.).
Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD.
View Article and Find Full Text PDFScand J Urol
January 2025
Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Medical Oncology, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, PR China.
Objective: Immunotherapy has become an option for the first-line therapy of advanced gastric cancer (GC), with improved survival. Our study aimed to investigate unresectable GC from an imaging perspective combined with clinicopathological variables to identify patients who were most likely to benefit from immunotherapy.
Method: Patients with unresectable GC who were consecutively treated with immunotherapy at two different medical centers of Chinese PLA General Hospital were included and divided into the training and validation cohorts, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!