Dual-Circularly Polarized and Flexible Metasurface Antenna Based on Graphene Assembled Film for Satellite Communications.

ACS Appl Mater Interfaces

Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China.

Published: April 2024

Traditional metal materials used in electronic devices are often problematic due to issues like bending resistance, oxidation leading to failure, and environmental pollution. To address these challenges, microwave electronic devices are constantly casting around for metal substitute materials with additional characteristics such as flexibility, anticorrosive, and eco-friendly. However, finding suitable materials that are accessible for radiofrequency (RF) applications is a difficult yet promising task. Consequently, a high-performance metasurface antenna based on highly conductive graphene films for satellite communications is developed in this paper. The proposed graphene assembled films (GAFs) have a conductivity of up to 1.13 × 10 S/m. Simulation and measurement results confirm the excellent performance of the designed antenna. Comparative experiments are also conducted on salt spray and mechanical bending between GAF antenna patterns and copper foil counterparts, further demonstrating the outstanding flexible property and corrosion resistance performance of prepared GAFs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c01211DOI Listing

Publication Analysis

Top Keywords

metasurface antenna
8
antenna based
8
graphene assembled
8
satellite communications
8
electronic devices
8
dual-circularly polarized
4
polarized flexible
4
flexible metasurface
4
antenna
4
based graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!