A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polysaccharide hydrogel containing silver nanoparticle@catechol microspheres with photothermal, antibacterial and anti-inflammatory activities for infected-wounds repair. | LitMetric

Polysaccharide hydrogel containing silver nanoparticle@catechol microspheres with photothermal, antibacterial and anti-inflammatory activities for infected-wounds repair.

Int J Biol Macromol

Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China. Electronic address:

Published: April 2024

Anti-infection hydrogels have recently aroused enormous attraction, particularly in the treatment of chronic wounds. Herein, silver nanoparticle@catechol formaldehyde resin microspheres (Ag@CFRs) were fabricated by one-step hydrothermal method and subsequently encapsulated in hydrogels which were developed by Schiff base reaction between aldehyde groups in oxidized hyaluronic acid and amino groups in carboxymethyl chitosan. The developed polysaccharide hydrogel exhibited microporous structure, high swelling capacity, favorable mechanical strength, enhanced tissue adhesion and photothermal activities. Additionally, the hydrogel not only ensured long-term and high-efficiency antibacterial performance (99.9 %) toward E. coli and S. aureus, but also realized superior cytocompatibility in vitro. Moreover, based on the triple antibacterial strategies endowed by chitosan, silver nanoparticles and the photothermal properties of catechol microspheres, the composite hydrogel exhibited excellent anti-infection function, significantly downregulated inflammatory factors (TNF-α and IL-1β) and promoted in vivo infected-wound healing. These results demonstrated that the polysaccharide hydrogel containing Ag@CFRs has great potential for infected-wounds repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130898DOI Listing

Publication Analysis

Top Keywords

polysaccharide hydrogel
12
silver nanoparticle@catechol
8
infected-wounds repair
8
hydrogel exhibited
8
hydrogel silver
4
nanoparticle@catechol microspheres
4
microspheres photothermal
4
photothermal antibacterial
4
antibacterial anti-inflammatory
4
anti-inflammatory activities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!