Paecilomyces variotii (a filamentous fungus), is a promising novel protein source in fish feeds due to its high nutritional value. Also, P. variotii has Microbial-Associated Molecular Patterns (MAMPs) such as glucans and nucleic acids that could modulate the host's immune response. To understand the potential bioactive properties of this fungus in Atlantic salmon (Salmo salar), our study was conducted to evaluate the gene expression of immune-related biomarkers (e.g., cytokines, effector molecules and receptors) on primary cultures from salmon head kidney (HKLs) and spleen leukocytes (SLs) exposed to either UV inactivated or fractions from P. variotii with or without inactivated Moritella viscosa (a skin pathogen in salmonids). Moreover, the effect of the fermentation conditions and down-stream processing on the physical ultrastructure and cell wall glucan content of P. variotii was characterized. The results showed that drying had a significant effect on the cell wall ultrastructure of the fungi and the choice of fermentation has a significant effect on the quantity of β-glucans in P. variotii. Furthermore, stimulating Atlantic salmon HKLs and SLs with P. variotii and its fractions induced gene expression related to pro-inflammatory (tnfα, il1β) and antimicrobial response (cath2) in HKLs, while response in SLs was related to both pro-inflammatory and regulatory response (tnfα, il6 and il10). Similarly, the stimulation with inactivated M. viscosa alone led to an up-regulation of genes related to pro-inflammatory (tnfα, il1β, il6) antimicrobial response (cath2), intra-cellular signalling and recognition of M. viscosa (sclra, sclrb) and a suppression of regulatory response (il10) in both HKLs and SLs. Interestingly, the co-stimulation of cells with P. variotii and M. viscosa induced immune homeostasis (il6, tgfβ) and antimicrobial response (cath2) in SLs at 48h. Thus, P. variotii induces immune activation and cellular communication in Atlantic salmon HKLs and SLs and modulates M. viscosa induced pro-inflammatory responses in SLs. Taken together, the results from physical and chemical characterization of the fungi, along with the differential gene expression of key immune biomarkers, provides a theoretical basis for designing feeding trials and optimize diets with P. variotii as a functional novel feed ingredient for Atlantic salmon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2024.109506 | DOI Listing |
Infections with bacteria of the genus Pasteurella have increased in occurrence in Atlantic salmon (Salmo salar) farms in Norway since 2018. This increase coincides with increased use of non-medicinal treatments against the parasitic salmon louse, Lepeophtheirus salmonis, in the farms. Here, we analysed the statistical association between the use of non-medicinal delousing methods and pasteurellosis in salmon farming in western Norway, from 2018 to 2023.
View Article and Find Full Text PDFFoods
January 2025
Nofima AS, Richard Johnsensgate 4, 4068 Stavanger, Norway.
The aim of this study was to develop a chilled, texture-modified salmon product for dysphagia patients, enriched with dairy and fish hydrolysate proteins. The challenge was to create a product with appealing sensory qualities and texture that meets level 5 (minced & moist) of the IDDSI framework. Atlantic salmon () was heat-treated (95 °C/15 min), blended, and reconstructed by adding texture modifiers, casein and whey protein, and enzymatically derived fish hydrolysate.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.
This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Department of Zoology, University of British Columbia, Vancouver, Canada.
In a previous study, we demonstrated successful regeneration of Atlantic salmon gill tissue following up to 50 % filament resection. The present study explored 1) the capacity of gill tissue to regenerate following more severe trauma, 2) if regeneration potential varies across regions of the arch, and 3) how tissue loss impacts the physiology of neighboring unresected filaments. Fish were divided between two resected groups and a control non-resected one.
View Article and Find Full Text PDFACS Environ Au
January 2025
Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-907 36, Sweden.
Pharmaceutical contaminants have spread in natural environments across the globe, endangering biodiversity, ecosystem functioning, and public health. Research on the environmental impacts of pharmaceuticals is growing rapidly, although a majority of studies are still conducted under controlled laboratory conditions. As such, there is an urgent need to understand the impacts of pharmaceutical exposures on wildlife in complex, real-world scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!