Identification of red blood cell distribution width as a prognostic factor in acute myeloid leukemia.

Exp Hematol

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China. Electronic address:

Published: May 2024

Many prognostic factors have been identified in acute myeloid leukemia (AML). In this study, we investigated novel prognostic biomarkers using machine learning and Cox regression models in a prospective cohort of 591 patients with AML and tried to identify potential therapeutic targets based on transcriptomic data. We found that elevated red blood cell distribution width (RDW) at diagnosis was an adverse prognostic factor for AML, independent of the 2022 European LeukemiaNet (ELN2022) genetic risk. As a continuous variable, higher RDW was associated with shorter overall survival (OS) (hazard ratio [HR] 1.087, 95% confidence interval [CI] 1.036-1.139, p < 0.001) and event-free survival (EFS) (HR 1.078, 95% CI 1.033-1.124, p < 0.001). Elevated RDW returned to normal after consolidation therapy, which indicated that leukemia cells resulted in abnormal RDW. We further investigated the relationship between RDW and transcriptome in another cohort of 191 patients with AML and public datasets using gene set enrichment analysis (GSEA) and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT). We found that patients in the high-RDW group were significantly enriched in the positive regulation of erythroid differentiation and inflammation-related pathways. Finally, we identified the inflammation-associated gene IL12RB2 and verified its prognostic relevance with patients with AML in public databases, suggesting it as a potential therapy target.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2024.104206DOI Listing

Publication Analysis

Top Keywords

patients aml
12
red blood
8
blood cell
8
cell distribution
8
distribution width
8
prognostic factor
8
acute myeloid
8
myeloid leukemia
8
aml public
8
prognostic
5

Similar Publications

Background/objectives: MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME VLD-peptide presented by HLA-A*02:01-encoded surface molecules.

View Article and Find Full Text PDF

Background: Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin-proteasome system to selectively degrade target proteins. This innovative technology has shown remarkable efficacy and specificity in degrading oncogenic proteins and has progressed through various stages of preclinical and clinical development for hematologic malignancies, including adult acute myeloid leukemia (AML). However, the application of PROTACs in pediatric AML remains largely unexplored.

View Article and Find Full Text PDF

Rat Sarcoma Virus Family Genes in Acute Myeloid Leukemia: Pathogenetic and Clinical Implications.

Biomedicines

January 2025

Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy.

Acute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive cancer with variable treatment responses. While clinical factors such as age and genetic mutations contribute to prognosis, recent studies suggest that CT attenuation scores may also predict treatment outcomes. This study aims to develop a nomogram combining clinical and CT-based factors to predict treatment response and guide personalized therapy for AML patients.

View Article and Find Full Text PDF

: GFI1-36N represents a single-nucleotide polymorphism (SNP) of the zinc finger protein Growth Factor Independence 1 (GFI1), in which the amino acid serine (S) is replaced by asparagine (N). The presence of the gene variant is associated with a reduced DNA repair capacity favoring myeloid leukemogenesis and leads to an inferior prognosis of acute myeloid leukemia (AML) patients. However, the underlying reasons for the reduced DNA repair capacity in leukemic cells are largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!