A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing cultivation strategies and scaling up for fucoxanthin production using Pavlova sp. | LitMetric

Optimizing cultivation strategies and scaling up for fucoxanthin production using Pavlova sp.

Bioresour Technol

Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan. Electronic address:

Published: May 2024

The microalgal-based production of fucoxanthin has emerged as an imperative research endeavor due to its antioxidant, and anticancer properties. In this study, three brown marine microalgae, namely Skeletonema costatum, Chaetoceros gracilis, and Pavlova sp., were screened for fucoxanthin production. All strains displayed promising results, with Pavlova sp. exhibiting the highest fucoxanthin content (27.91 mg/g) and productivity (1.16 mg/L·day). Moreover, the influence of various cultivation parameters, such as culture media, salinity, sodium nitrate concentration, inoculum size, light intensity, and iron concentration, were investigated and optimized, resulting in a maximum fucoxanthin productivity of 7.89 mg/L·day. The investigation was further expanded to large-scale outdoor cultivation using 50 L tubular photobioreactors, illustrating the potential of Pavlova sp. and the cultivation process for future commercialization. The biomass and fucoxanthin productivity for the large-scale cultivation were 70.7 mg/L·day and 4.78 mg/L·day, respectively. Overall, the findings demonstrated considerable opportunities for fucoxanthin synthesis via microalgae cultivation and processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.130609DOI Listing

Publication Analysis

Top Keywords

fucoxanthin production
8
fucoxanthin productivity
8
fucoxanthin
7
cultivation
5
optimizing cultivation
4
cultivation strategies
4
strategies scaling
4
scaling fucoxanthin
4
pavlova
4
production pavlova
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!