Water resource recovery facilities (WRRFs) performing biological nitrogen removal (BNR) often require external carbon sources for meeting nitrogen discharge permit limits. This brings an additional financial burden to the facilities considering the continuous need of these external carbon sources. This paper evaluates the utilization of airport stormwater, which in the winter season is rich in aircraft deicing fluid (ADF) as an alternative external carbon source. Denitrification and nitrification bench scale experiments were performed to assess the efficacy of external carbon sources to remove nitrogen in WRRFs. Experimental results showed that ADFs achieve denitrification rates of 0.064-0.066 d, higher than what achieved by a commercial carbon source, MicroC 2000A, with corresponding value of 0.058 d at low temperatures, as low as 13 °C, which is considered a worst-case scenario for nitrogen removal efficiency. Furthermore, no inhibition to nitrification associated with the ADFs was observed. Subsequently a dynamic modeling study was conducted to assess the performance of ADFs as external carbon sources for denitrification and compared them to the conventional source that was being used in a full-scale BNR process. Results from the dynamic modeling study revealed that if 40 % of the spent-ADF at LaGuardia airport, New York City, could be collected with the stormwater and conveyed to a WRRF via the sewer collection system, an approximate reduction of 30 % of the commercial external carbon source could be accomplished by repurposing a waste product. This study contributes to the potential of ADF as a denitrification aid and an alternative for commercially available carbon sources with comparable nitrogen removal efficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171795DOI Listing

Publication Analysis

Top Keywords

external carbon
28
carbon sources
20
carbon source
16
nitrogen removal
12
carbon
9
aircraft deicing
8
deicing fluid
8
source denitrification
8
dynamic modeling
8
modeling study
8

Similar Publications

Reversible Isomerization of Stiff-Stilbene by an Oriented External Electric Field.

J Am Chem Soc

January 2025

Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.

View Article and Find Full Text PDF

Improvement of Bending Stiffness of Timber Beams with Ultra-High-Modulus-Carbon-Fibre-Reinforced Polymer Sheets.

Materials (Basel)

December 2024

Department of Theory of Structures and Building Information Modeling (BIM), Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.

The bending stiffness of beams represents a pivotal parameter influencing both the dimensions of the elements during their design and their subsequent utilisation. It is evident that excessive deflections can cause discomfort to users and contribute to further structural degradation. The objective of this study was to enhance the bending stiffness of timber beams by bonding a composite sheet to their external surfaces.

View Article and Find Full Text PDF

Magnetic Molecularly Imprinted Polymers with Hydrophilic Shells for the Selective Enrichment and Detection of Rosmarinic Acid in Aqueous Extraction.

Plants (Basel)

December 2024

Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.

Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of , , and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.

View Article and Find Full Text PDF

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach.

Mater Horiz

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!