Thinning enhances forest soil C storage by shifting the soil toward an oligotrophic condition.

Sci Total Environ

School of Civil and Environmental Engineering, Yonsei University, Republic of Korea. Electronic address:

Published: May 2024

Forests are significant carbon reservoirs, with approximately one-third of this carbon stored in the soil. Forest thinning, a prevalent management technique, is designed to enhance timber production, preserve biodiversity, and maintain ecosystem functions. Through its influence on biotic and abiotic factors, thinning can profoundly alter soil carbon storage. Yet, the full implications of thinning on forest soil carbon reservoirs and the mechanisms underpinning these changes remain elusive. In this study, we undertook a two-year monitoring initiative, tracking changes in soil extracellular enzyme activities (EEAs), microbial communities, and other abiotic parameters across four thinning intensities within a temperate pine forest. Our results show a marked increase in soil carbon stock following thinning. However, thinning also led to decreased dissolved organic carbon (DOC) content and a reduced DOC to soil organic carbon (SOC) ratio, pointing toward a decline in soil carbon lability. Additionally, fourier transform infrared spectroscopy (FTIR) analysis revealed an augmented relative abundance of aromatic compounds after thinning. There was also a pronounced increase in absolute EEAs (per gram of dry soil) post-thinning, implying nutrient limitations for soil microbes. Concurrently, the composition of bacterial and fungal communities shifted toward oligotrophic dominance post thinning. Specific EEAs (per gram of soil organic matter) exhibit a significant reduction following thinning, indicating a deceleration in organic matter decomposition rates. In essence, our findings reveal that thinning transitions soil toward an oligotrophic state, dampening organic matter decomposition, and thus bolstering the soil carbon storage potential of forest. This study provides enhanced insights into the nuanced relationship between thinning practices and forest soil carbon dynamics, serving as a robust foundation for enlightened forest management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171745DOI Listing

Publication Analysis

Top Keywords

soil carbon
24
soil
15
thinning
12
forest soil
12
organic matter
12
carbon
10
soil oligotrophic
8
carbon reservoirs
8
carbon storage
8
organic carbon
8

Similar Publications

Non-grain utilization of cultivated land threatens farmland ecological environment and soil health, which restricts grain production. To identify the key obstacle factors of cultivated soil under non-grain utilization, explore the changes of soil quality and function, and evaluate the effects of non-grain utilization on the health of farmland soil, we evaluated soil health of farmland under different non-grain utilization types (vegetables, bamboo-abandoned, nursery-grown plant-abandoned, nursery-grown plant-rice) by soil quality index and soil multifunctionality index method combined with sensitivity and resistance approaches. The results showed that soil organic carbon and total nitrogen (TN) in the bamboo-abandoned soil were 95.

View Article and Find Full Text PDF

[Soil health evaluation of loquat orchard based on soil quality index method].

Ying Yong Sheng Tai Xue Bao

October 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China.

Fruit quality and yield in orchards will decrease after long-term planting. To analyze the changes of soil quality under different planting years and identify the key factors of the declining of orchard soil quality could provide scientific foundation for optimizing fertilization management of orchard soil. In this study, we analyzed the changes of soil physical, chemical, and biological properties of loquat orchard under different planting years (<10 years, 10-15 years, 15-20 years, ≥20 years) in Ninghai County, Zhejiang Province, and evaluated soil health by using soil quality index, multifunctionality index, and sensitivity and resistance indicators.

View Article and Find Full Text PDF

[Isolation, screening of zinc solubilizing microorganisms and its application in low zinc calcareous soil].

Ying Yong Sheng Tai Xue Bao

October 2024

College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China.

Inoculating zinc solubilizing microorganisms (ZSMs) is considered as a promising strategy for increasing Zn phytoavailability in soils with low Zn availability. In present study, we screened six strains of ZSMs from rhizosphere of green manure crop, including three strains of fungi, , and three strains of bacteria, . We conducted a pot experiment of Bok choy inoculated with different ZSMs to analyze the Zn content in shoots and roots, and compared the Zn solubilizing effect of ZSMs.

View Article and Find Full Text PDF

We elucidated the changes of soil microbial biomass and community structure in soil profiles under four typical land use types (farmland, grassland, secondary forest and plantation)and across five soil layers (0-10, 10-20, 20-30, 30-40, 40-50 cm) in the northern mountainous region of Hebei Province. We measured soil microbial biomass by phospholipid fatty acid (PLFA) method, and investigated the effects of land use and soil depth on soil microbial biomass and community structure by variance analysis, correlation analysis and redundancy analysis. The results showed that soil water content, bulk density, and organic carbon content of farmland differed significantly from other land use types.

View Article and Find Full Text PDF

[Impacts of freeze-thaw process on soil microbial nutrient limitation in slope farmlands of the Chinese Mollisol region].

Ying Yong Sheng Tai Xue Bao

October 2024

State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.

Understanding the impacts of freeze-thaw action on soil microbial nutrient limitation can provide important support for sustainable utilization of black soil resources. We analyzed the impacts of freeze-thaw action on soil microbial nutrient limitation on a slope farmland located in a typical thick Mollisol region of Keshan County, Heilongjiang Province. We examined the responses of soil microbial nutrient limitation to soil erosion rates through measuring soil nutrient, soil microbial biomass, and soil enzyme activities before and after freeze-thaw under natural conditions, and estimated the soil erosion rates by Cs tracing technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!