Evaluating the success of vegetation restoration in rewilded salt marshes.

Sci Total Environ

CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. Electronic address:

Published: May 2024

Floodbank realignment is a common practice aimed at restoring salt marsh vegetation on previously embanked land. However, experiences indicate that it may take several years before salt marsh vegetation becomes fully established. Various challenges arising from ecogeomorphic feedback mechanisms could pose significant setbacks to vegetation recolonization. The widespread adoption of transplantation techniques for the restoration and rehabilitation of rewilded landscapes has indeed proven to be a valuable tool for accelerating plant development. In the Ria Formosa coastal lagoon (South of Portugal), a pilot plan was implemented, and two salt marsh pioneer species, Spartina maritima (syn. Sporobolus maritimus) and Sarcocornia perennis (syn. Salicornia perennis), were transplanted from a natural salt marsh to a rewilded marsh. Biodegradable 3D porous structures were installed to mimic transplant clumping, aid sedimentation, and enhance the plant's initial adjustment. Ecological, sediment, and hydrodynamic data were collected during the 12-month pilot restoration plan. The environmental profiles of the donor and restoration sites were compared to substantiate the success of the transplants in the rewilded salt marsh. Results show that although plant shoot density decreased after the transplanting, Spartina maritima acclimated well to the new environmental conditions of the restoration site, showing signs of growth and cover increase, whilst Sarcocornia perennis was not able to acclimatize and survive in the restoration site. The failure behind the Sarcocornia perennis acclimation might be related to the bed properties and topographic properties of the restoration site in the rewilded marsh. Major findings contribute to a more comprehensive understanding of how salt marsh pioneering vegetation successfully colonizes disturbed habitats, facilitated using 3D-biodegradable structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171699DOI Listing

Publication Analysis

Top Keywords

salt marsh
24
sarcocornia perennis
12
restoration site
12
rewilded salt
8
marsh
8
marsh vegetation
8
spartina maritima
8
rewilded marsh
8
restoration
7
salt
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!