Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.116329 | DOI Listing |
Eur J Med Chem
April 2024
Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China. Electronic address:
Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.
View Article and Find Full Text PDFBMC Genomics
March 2020
USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, 20705, USA.
Background: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe.
View Article and Find Full Text PDFUrol Res
August 2005
Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa.
Crystal adherence to the renal epithelium is widely regarded as a probable mechanism of stone formation. Intracrystalline proteins may provide access to the core of urinary crystals and thereby facilitate the dismantling of these crystals after their attachment to and phagocytosis by renal epithelial cells. The present study investigated the role of proteolysis and limited dissolution of urinary calcium oxalate (CaOx) crystals in South Africa's white and black populations with a view to understanding the remarkably low stone incidence in the black population compared with the whites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!