Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Phillyrin, the major lignin compound of Forsythia suspense (Thunb.) Vahl, has been shown the effects of anti-inflammatory and antioxidant. Our study was aimed to explore the protective effect of phillyrin on glomerular mesangial cells (HBZY-1) and the potential mechanism.
Methods: Cell viability, cytokine production, levels of reactive oxygen radicals (ROS), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as autophagy and apoptosis levels were determined to verify the mechanism of phillyrin on HBZY-1 cells.
Results: Our result indicated that phillyrin significantly inhibited HG-induced HBZY-1 proliferation by inhibiting Bcl-2 expression and upregulating Bad, cleaved caspase-3, and -9 expression. Also, phillyrin suppressed HG-induced mesangial extracellular matrix accumulation by inhibiting the expression of fibronectin and transforming growth factor-β1. Further, phillyrin inhibited oxidative stress and inflammation by decreasing ROS, MDA, TNF-α, IL-1β, and IL-6 contents and increasing SOD and GSH expression. Phillyrin also promoted autophagy by increasing LC3-II/LC3-I ratio and down-regulating p62 expression. Furthermore, WB assay showed that phillyrin inhibited oxidative stress caused by HG via activating Nrf2 signaling pathway, while attenuated proliferation and inflammation in HBZY-1 cells through inactivating PI3K/Akt/mTOR and NF-κB pathways.
Conclusion: All results showed that phillyrin might be a promising therapeutic agent for the treatment of DN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jpp/rgae028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!