Rapid alkalinization factors (RALFs), belonging to a family of small secreted peptides, have been considered as important signaling molecules in diverse biological processes, including immunity. Current studies on RALF-modulated immunity mainly focus on Arabidopsis, but little is reported in crop plants. The rice immune receptor XA21 confers immunity to the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Here, we pursued functional characterization of rice RALF26 (OsRALF26) up-regulated by Xoo during XA21-mediated immune response. When applied exogenously as a recombinant peptide, OsRALF26 induced a series of immune responses, including pathogenesis-related genes (PRs) induction, reactive oxygen species (ROS) production, and callose deposition in rice and/or Arabidopsis. Transgenic rice and Arabidopsis overexpressing OsRALF26 exhibited significantly enhanced resistance to Xoo and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), respectively. In yeast two-hybrid, pull-down assays, and co-immunoprecipitation analyses, rice FER-like receptor 1 (OsFLR1) was identified as a receptor of OsRALF26. Transient expression of OsFLR1 in Nicotiana benthamiana leaves displayed significantly increased ROS production and callose deposition after OsRALF26 treatment. Together, we propose that OsRALF26 induced by Xoo in an XA21-dependent manner is perceived by OsFLR1 and may play a novel role in the enforcement of XA21-mediated immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16694 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!