This study investigates the impact of atomic defects, such as oxygen vacancies and Ce ions, on cerium oxide (ceria) surfaces during chemical mechanical polishing (CMP) for silica glass finishing. Using density functional theory (DFT) and reactive molecular dynamics simulations, the interaction of orthosilicic molecules and silica glass with dry and wet ceria surfaces is explored. Defects alter the surface reactivity, leading to the dissociation of orthosilicic acid on oxygen vacancies, forming a strong Si-O-Ce bond. Hydroxylated surfaces exhibit easier oxygen vacancy formation and thermodynamically favored substitution of hydroxyl groups with orthosilicic acid. A new ReaxFF library for silica/ceria interfaces with defects is validated using DFT outcomes. Reactive MD simulations demonstrate that ceria surfaces with 30% Ce ions on (111) planes exhibit higher polishing efficiency, attributed to increased Si-O-Ce bond formation. The simultaneous presence of oxygen vacancies and various acidic and basic sites on ceria surfaces enhances the polishing efficiency, involving acid-base reactions with silica. Defective surfaces show superior efficiency by removing silicate chains, contrasting with nondefective surfaces removing isolated orthosilicate units. This study provides insights into optimizing CMP processes for high-precision glass industry surface finishing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c03557 | DOI Listing |
Int J Biol Macromol
December 2024
School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China. Electronic address:
Delayed healing due to the persistent microenvironment disorder caused by the hyperglycemia and persistent inflammatory reaction is a core pathological characteristic of diabetic wound. Topical microenvironment modulation represents an important avenue to address delayed healing issue. Microneedles are powerful tools for topical microenvironment modulation as they can effectively deliver therapeutic ingredients into the shallow surface layer of the wound based on their depth-limited tissue penetration capability.
View Article and Find Full Text PDFSci Adv
December 2024
Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
The landmark discovery of gold catalysts has aroused substantial interest in heterogeneous catalysis, yet the catalytic mechanism remains elusive. For carbon monoxide oxidation on gold nanoparticles (NPs) supported on ceria surfaces, it is widely believed that carbon monoxide adsorbs on the gold particles, while the reaction occurs at the gold/ceria interface. Here, we have investigated the dynamic changes of supported gold NPs with various sizes in a carbon monoxide oxidation atmosphere using deep potential molecular dynamics simulations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Chemical and Environmental Engineering Group, Rey Juan Carlos University, Tulipan Street s/n., 28933 Mostoles, Madrid, Spain.
Mesoporous materials with high surface area, large pore volume, and adjustable pore size are promising in the fields of adsorption and heterogeneous catalysis. In this work, ordered mesoporous ceria structures were successfully prepared via nanocasting using SBA-15 as a template, with Ce(NO)·6HO or CeCl·7HO as ceria precursors. The materials were characterized before and after template removal.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece.
The water-gas shift (WGS) reaction is one of the most significant reactions in hydrogen technology since it can be used directly to produce hydrogen from the reaction of CO and water; it is also a side reaction taking place in the hydrocarbon reforming processes, determining their selectivity towards H production. The development of highly active WGS catalysts, especially at temperatures below ~450 °C, where the reaction is thermodynamically favored but kinetically limited, remains a challenge. From a fundamental point of view, the reaction mechanism is still unclear.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 31, Moscow 119991, Russia.
Cerium dioxide sols stabilised with L-malic acid were shown to exhibit significant antioxidant activity towards alkyl peroxyl radicals in the range of ligand:CeO molar ratios of 0.2-1 (0.2:1, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!