Purpose: The need to investigate the pathogenesis and treatment of nonalcoholic fatty liver disease (NAFLD) has led to the development of multiple mouse models. The aim of this study was to validate a fast food diet (FFD) mouse model that is introduced as being close to the human disease.

Methods: Eight to nine weeks old male and female C57BL/6 J mice were randomly allocated to a FFD group or to a chow diet (CD) group. Every four weeks, mice were weighed, and blood samples were collected for the measurement of glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TGs) and total cholesterol. After 25 weeks, mice were sacrificed, and liver tissue was histologically evaluated.

Results: FFD mice gained more weight (p = 0.049) and presented a higher liver-to-body weight ratio (p < 0.001) compared to CD mice. FFD group presented with greater steatosis, hepatocellular ballooning and NAFLD activity score (NAS), whereas lobular inflammation and fibrosis were not significantly different compared to CD. When stratified by sex, NAS was different between FFD and CD groups in both male and female mice. Group by time interaction was significant for weight, ALT and cholesterol, but not for glucose, AST and TGs.

Conclusion: FFD mice presented with morphologic and biochemical features of NAFLD and with greater hepatic steatosis, hepatocellular ballooning and NAS, but not lobular inflammation and fibrosis, compared to CD mice. These results only partly validate the FFD mouse model for NAFLD, at least for a 6-month feeding period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291610PMC
http://dx.doi.org/10.1007/s12020-024-03769-5DOI Listing

Publication Analysis

Top Keywords

mouse model
8
nonalcoholic fatty
8
fatty liver
8
liver disease
8
weeks mice
8
partial validation
4
validation six-month
4
six-month high-fat
4
high-fat diet
4
diet fructose-glucose
4

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!