Understanding the Role of Scavenger Receptor A1 in Nanoparticle Uptake by Murine Macrophages.

Methods Mol Biol

Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Published: March 2024

Nanoparticles can be cleared from the circulation and taken up by tissue-resident macrophages. This property can be beneficial when drug or antigen delivery to macrophages is desired; however, rapid clearance of nanoparticles not intended for delivery to immune cells may reduce nanoparticle circulation time and affect the efficacy of nanoparticle-formulated drug products. Therefore, understanding nanoparticles' uptake by macrophages is an essential step in the preclinical development of nanotechnology-based drug products. Understanding the route of nanoparticle uptake by macrophages may also provide mechanistic insights into the immunotoxicity of nanomaterials. The protocol described herein can be used to assess the nanoparticles' uptake by macrophages and understand the involvement of scavenger receptor A1 to inform mechanistic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3786-9_26DOI Listing

Publication Analysis

Top Keywords

uptake macrophages
12
scavenger receptor
8
nanoparticle uptake
8
drug products
8
products understanding
8
nanoparticles' uptake
8
macrophages
6
understanding role
4
role scavenger
4
receptor nanoparticle
4

Similar Publications

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.

View Article and Find Full Text PDF

Optimized Method to Generate Well-Characterized Macrophages from Induced Pluripotent Stem Cells.

Biomedicines

January 2025

Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

: Macrophages play a pivotal role in various pathogenic processes, necessitating the development of efficient differentiation techniques to meet the high demand for these cells in research and therapy. Human macrophages can be obtained via culturing peripheral blood monocytes; however, this source has limited yields and requires patient contact for each proposed use. In addition, it would be difficult to perform gene editing on peripheral blood monocytes.

View Article and Find Full Text PDF

While there are a number of factors which may promote chronic inflammation, a major factor is pro-inflammatory activation of resident and infiltrating macrophages. Recently, exposures to persistent organic pollutants including organochlorine (OC) pesticides have been implicated in dysregulation of macrophage function. However, the majority of these studies examined single compound effects and not mixture-based effects.

View Article and Find Full Text PDF

Multivalent ionizable lipid-polypeptides for tumor-confined mRNA transfection.

Bioact Mater

April 2025

Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymers, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.

mRNA therapeutics is revolutionizing the treatment concepts toward many diseases including cancer. The potential of mRNA is, however, frequently limited by modest control over site of transfection. Here, we have explored a library of multivalent ionizable lipid-polypeptides (MILP) to achieve robust mRNA complexation and tumor-confined transfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!