Rapid FRET Assay for the Early Detection of Alpha-Synuclein Aggregation in Parkinson's Disease.

ACS Chem Neurosci

Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

Published: April 2024

Alpha-synuclein (α-Syn) is a key protein of Parkinson's disease (PD). Oligomers formed by misfolding and aggregation of α-Syn can cause many pathological phenomena and aggravate the development of PD. Therefore, sensitive and accurate detection of oligomers is essential to understanding the pathology of PD and beneficial to screening and developing new drugs against PD. Here, we demonstrated a simple and sensitive method to detect the early aggregation of α-Syn Förster resonance energy transfer (FRET) technology. We performed systematic investigations of the FRET sensitizations, efficiencies, and donor-to-acceptor distances during α-Syn aggregation, which was proved to be more sensitive to reflect small distance changes in the early stage of α-Syn aggregation, especially for α-Syn oligomers. The FRET assays were also applied to study the influence of Ser129 phosphorylation (pS129) on the aggregation rate of α-Syn. Our results showed that pS129 modification promotes α-Syn aggregation and enhances the ability of preformed fibrils to induce monomer aggregation. pS129 also increased the cytotoxicity of α-Syn. These results are of great significance for a better understanding of the pathological mechanisms of PD and future PD drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.3c00617DOI Listing

Publication Analysis

Top Keywords

aggregation α-syn
12
α-syn aggregation
12
α-syn
9
aggregation
8
parkinson's disease
8
rapid fret
4
fret assay
4
assay early
4
early detection
4
detection alpha-synuclein
4

Similar Publications

Efficient harvesting of triplet excitons multiple fast TTA up-conversion and high-lying reverse intersystem crossing channels for efficient blue fluorescent organic light-emitting diodes.

Chem Sci

January 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China

The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.

View Article and Find Full Text PDF

Incorporating ecological connectivity into spatial conservation planning is increasingly recognized as a key strategy to facilitate species movements, especially under changing environmental conditions. However, obtaining connectivity data is challenging, especially in the marine realm. Sea currents are essential for exploring marine structural connectivity, but transforming sea current data into spatial connectivity matrices involves complex and resource-intensive processing steps to ensure accuracy and usability.

View Article and Find Full Text PDF

Introduction: Fluid overload (FO), a state of pathologic positive cumulative fluid balance (CFB), is common in Pediatric Intensive Care Units (PICU) and associated with morbidity and mortality. Because different PICUs may have unique needs, barriers, and limitations to accurately report fluid balance (FB) and reduce FO, understanding the drivers of positive FB is needed. We hypothesize CFB >5% and >10% is common within initial days of PICU admission, but that reasons for high %CFB will vary across sites, as will barriers to accurate FB recording and opportunities to improve FB recording and management.

View Article and Find Full Text PDF

Co-existing neuropathological comorbidities have been repeatedly reported to be extremely common in subjects dying with dementia due to Alzheimer disease. As these are likely to be additive to cognitive impairment, and may not be affected by molecularly-specific AD therapeutics, they may cause significant inter-individual response heterogeneity amongst subjects in AD clinical trials. Furthermore, while originally noted for the oldest old, recent reports have now documented high neuropathological comorbidity prevalences in younger old AD subjects, who are more likely to be included in clinical trials.

View Article and Find Full Text PDF

Objective: Federated research networks, like Evolve to Next-Gen Accrual of patients to Clinical Trials (ENACT), aim to facilitate medical research by exchanging electronic health record (EHR) data. However, poor data quality can hinder this goal. While networks typically set guidelines and standards to address this problem, we developed an organically evolving, data-centric method using patient counts to identify data quality issues, applicable even to sites not yet in the network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!