Surface tension of supercooled water is a fundamental property in various scientific processes. In this study, we perform molecular dynamics simulations with the TIP4P-2005 model to investigate the surface tension of supercooled water down to 220 K. Our results show a second inflection point (SIP) in the surface tension at temperature TSIP ≈ 267.5 ± 2.3 K. Using an extended IAPWS-E functional fit for the water surface tension, we calculate the surface excess internal-energy and entropy terms of the excess Helmholtz free energy. Similar to prior studies [Wang et al., Phys. Chem. Chem. Phys. 21, 3360 (2019); Gorfer et al., J. Chem. Phys. 158, 054503 (2023)], our results show that the surface tension is governed by two driving forces: a surface excess entropy change above the SIP and a surface excess internal-energy change below it. We study hydrogen-bonding near the SIP because it is the main cause of water's anomalous properties. With decreasing temperature, our results show that the entropy contribution to the surface tension reaches a maximum slightly below the SIP and then decreases. This is because the number of hydrogen bonds increases more slowly below the SIP. Moreover, the strengths and lifetimes of the hydrogen bonds also rise dramatically below the SIP, causing the internal-energy term to dominate the excess surface free energy. Thus, the SIP in the surface tension of supercooled TIP4P-2005 water is associated with an increase in the strengths and lifetimes of hydrogen bonds, along with a decrease in the formation rate (#/K) of new hydrogen bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0185832DOI Listing

Publication Analysis

Top Keywords

surface tension
32
hydrogen bonds
20
supercooled water
12
surface
12
tension supercooled
12
sip surface
12
surface excess
12
second inflection
8
inflection point
8
water surface
8

Similar Publications

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Enabling Fast AI-Driven Inverse Design of a Multifunctional Nanosurface by Parallel Evolution Strategies.

Nanomaterials (Basel)

December 2024

Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.

Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve specific functionalities such as frictional, optical, and bactericidal properties.

View Article and Find Full Text PDF

Lubrication surfaces reduce the risk of cross-contamination and enhance the long-term stability of medical devices, which holds significance in the realm of antifouling medical materials. However, the complexity of constructing micronano structures to immobilize lubricating fluids and the fluorine content typically found in silane coupling agents restrict their widespread adoption. In this study, we prepared a biomimetic lubricating coating (BLC) through the one-step self-assembly of octadecyltrichlorosilane and oil infusion.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a green and effective pesticide formulation using nanoemulsions, including adjuvants like Calcium Alkyl Benzene Sulphonate (Atlox 4838B) and trisiloxane ethoxylate (ARGAL), aimed at targeting the pest Sitophilus oryzae.
  • Results indicate that all formulations achieved nanoscale droplets, with scanning electron microscopy revealing their spherical shapes, while dynamic light scattering showed variations in size based on the presence of adjuvants.
  • The nanoemulsions demonstrated good stability under various conditions, with most formulations having acidic to neutral pH levels, and adjuvants enhanced their stability by altering droplet characteristics and increasing kinetic stability.
View Article and Find Full Text PDF

Preparation and characterization of the octenyl succinic anhydride (OSA) modified sphingan WL gum as novel biopolymeric surfactants.

Int J Biol Macromol

January 2025

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China. Electronic address:

Combining polymer and surfactant in one agent namely polymeric surfactants with both high viscosity and surface activity has become a viable alternative for the traditional enhanced oil recovery (EOR) processes. With the purpose of developing new polymeric surfactants, the biopolymer flooding agent sphingan WL gum was modified by octenyl succinic anhydride (OSA) through the esterification reaction. The effects of molecular weight (MW) of WL and the OSA: WL ratio on the properties of the products were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!