A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903497PMC
http://dx.doi.org/10.1063/5.0054075DOI Listing

Publication Analysis

Top Keywords

particulate matter
20
mucosal systems
12
particulate contaminations
8
humans animals
8
human health
8
particulate
6
matter
5
forgotten particulate
4
matter contaminations
4
mucosal
4

Similar Publications

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).

View Article and Find Full Text PDF

Air pollution and breast cancer risk: a Mendelian randomization study.

Int J Environ Health Res

January 2025

Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Article Synopsis
  • Previous research on the link between air pollution and breast cancer has shown mixed results, lacking a clear causal relationship.
  • A study using data from genetic analysis showed significant associations between air pollution levels (specifically PM and NO) and increased breast cancer risk, with odds ratios indicating higher risk for affected individuals.
  • The findings suggest that reducing air pollution may help lower breast cancer risk, particularly for specific subtypes like luminal B/HER2-negative-like cancer.
View Article and Find Full Text PDF

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

What Impact Does Net Zero Action on Road Transport and Building Heating Have on Exposure to UK Air Pollution?

Environ Sci Technol

January 2025

Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.

This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.

View Article and Find Full Text PDF

Background: Health system and environmental factors play a significant role in achieving the World Health Organization (WHO) End Tuberculosis (TB) targets. However, quantitative measures are scarce or non-existent at a global level. We aimed to measure the progress made towards meeting the global End TB milestones from 2015 to 2020 and identify health system and environmental factors contributing to the success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!