Quantitative analysis of cell structures is essential for biomedical and pharmaceutical research. The standard imaging approach relies on fluorescence microscopy, where cell structures of interest are labeled by chemical staining techniques. However, these techniques are often invasive and sometimes even toxic to the cells, in addition to being time consuming, labor intensive, and expensive. Here, we introduce an alternative deep-learning-powered approach based on the analysis of bright-field images by a conditional generative adversarial neural network (cGAN). We show that this is a robust and fast-converging approach to generate virtually stained images from the bright-field images and, in subsequent downstream analyses, to quantify the properties of cell structures. Specifically, we train a cGAN to virtually stain lipid droplets, cytoplasm, and nuclei using bright-field images of human stem-cell-derived fat cells (adipocytes), which are of particular interest for nanomedicine and vaccine development. Subsequently, we use these virtually stained images to extract quantitative measures about these cell structures. Generating virtually stained fluorescence images is less invasive, less expensive, and more reproducible than standard chemical staining; furthermore, it frees up the fluorescence microscopy channels for other analytical probes, thus increasing the amount of information that can be extracted from each cell. To make this deep-learning-powered approach readily available for other users, we provide a Python software package, which can be easily personalized and optimized for specific virtual-staining and cell-profiling applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903417 | PMC |
http://dx.doi.org/10.1063/5.0044782 | DOI Listing |
J Cell Sci
January 2025
Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.
Pluripotent Stem Cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, while different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here we investigated how the actin cytoskeleton is regulated in different pluripotency states.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
() exhibits aberrant changes in patients with colitis, and it has been reported to dominate the colonic mucosal immune response. Here, we found that PMA1 expression was significantly increased in from patients with IBD compared to that in healthy controls. A Crispr-Cas9-based fungal strain editing system was then used to knock out PMA1 expression in .
View Article and Find Full Text PDFActa Crystallogr A Found Adv
March 2025
Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-11 Mustuno, Atsuta-ku, Nagoya, 456-8587, Japan.
Due to the short de Broglie wavelength of electrons compared with X-rays, the curvature of their Ewald sphere is low, and individual electron diffraction patterns are nearly flat in reciprocal space. As a result, a reliable unit-cell determination from a set of randomly oriented electron diffraction patterns, an essential step in serial electron diffraction, becomes a non-trivial task. Here we describe an algorithm for unit-cell determination from a set of independent electron diffraction patterns, as implemented in the program PIEP (Program for Interpreting Electron diffraction Patterns), written in the early 1990s.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, Yale University, 310 Cedar Street, New Haven, Connecticut 06510, United States.
Encapsulating fibroblasts in alginate hydrogels is a promising strategy to promote wound healing. However, improving the cell function within the alginate matrix remains a challenge. In this study, we engineer an injectable hydrogel through mixing alginate function with collagen and fibronectin, creating a better microenvironment for enhancing fibroblast function and cytokine secretion.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture and Biology, Liaocheng University, Liaocheng, China.
The wall-associated kinase (WAK) gene family encodes functional cell wall-related proteins. These genes are widely presented in plants and serve as the receptors of plant cell membranes, which perceive the external environment changes and activate signaling pathways to participate in plant growth, development, defense, and stress response. However, the WAK gene family and the encoded proteins in soybean (Glycine max (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!