Mupirocin is a clinically important antibiotic produced by NCIMB 10586 that is assembled by a complex -AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related -AT biosynthetic pathways (e.g. thiomarinol).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947060PMC
http://dx.doi.org/10.1002/ange.202212393DOI Listing

Publication Analysis

Top Keywords

side chain
12
programmed iteration
4
iteration controls
4
controls assembly
4
assembly nonanoic
4
nonanoic acid
4
acid side
4
chain antibiotic
4
antibiotic mupirocin
4
mupirocin mupirocin
4

Similar Publications

In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.

View Article and Find Full Text PDF

Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.

Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.

View Article and Find Full Text PDF

Background: Beta-2 microglobulin (β2m) is a component of the major histocompatibility complex class I (MHC-I) playing a crucial role in the immune system on cell surface, but it can be separated from the MHC-I and exist in biological fluid independently. Numerous reports have shown that β2m is a systemic pro-aging factor impairing cognitive function, and that it is increased in the blood and CSF of patients with Alzheimer's disease (AD). While β2m in the body fluid has been recognized as a potential factor in AD and aging, the development of therapeutic agents, especially those directly targeting β2m using antibodies, may face challenges.

View Article and Find Full Text PDF

Lipophilicity Modulation of Fluorescent Probes for Imaging of Cellular Microvesicle Dynamics.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.

Real-time monitoring of dynamic microvesicles (MVs), vesicles associated with living cells, is of great significance in deeply understanding their origin, transport, and function. However, specific labeling MVs poses a challenge due to the lack of unique biomarkers that differentiate them from other cellular compartments. Here, we present a strategy to selectively label MVs by evaluating a series of lipid layer-sensitive cationic indolium-coumarin fluorescent probes (designated as IC-C, with ranging from 1 to 18) that feature varying aliphatic side chains (CH).

View Article and Find Full Text PDF

The influence of aqueous solutions of 2-(tetrafluoro(trifluoromethyl)-λ-sulfanyl-ethan-1-ol (CFSF-ethanol) and 2,2,2-trifluoroethanol (TFE) on the secondary structure of melittin was studied using circular dichroism (CD) and molecular dynamics (MD) simulations. In water, melittin transitions into a random coil. However, upon addition of even as little as 1% by volume of CFSF-ethanol, the secondary structure of melittin stabilizes as a helix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!