AI Article Synopsis

  • Human tissues have a unique structure that gives them special mechanical properties, which help them adapt to different environments.
  • Hydrogels are water-rich materials that have become valuable in tissue engineering for repairing or replacing damaged tissues, with highly oriented hydrogels mimicking the organized architecture of human tissues better than traditional types.
  • The review focuses on the design strategies for creating these highly oriented hydrogels and explores their effects on cell behavior in various biological applications, including repairing complex tissues like the cornea, skin, and muscles.

Article Abstract

Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels. The design and preparation of highly oriented hydrogels involve strategies like including hydrogels with highly oriented nanofillers, polymer-chain networks, void channels, and microfabricated structures. Understanding the specific mechanism of action of how these highly oriented hydrogels affect cell behavior and their biological applications for repairing highly oriented tissues such as the cornea, skin, skeletal muscle, tendon, ligament, cartilage, bone, blood vessels, heart, etc., requires further exploration and generalization. Therefore, this review aims to fill that gap by focusing on the design strategy of highly oriented hydrogels and their application in the field of tissue engineering. Furthermore, we provide a detailed discussion on the application of highly oriented hydrogels in various tissues and organs and the mechanisms through which highly oriented structures influence cell behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945336PMC
http://dx.doi.org/10.7150/thno.89493DOI Listing

Publication Analysis

Top Keywords

highly oriented
40
oriented hydrogels
24
highly
10
hydrogels
9
oriented
9
tissue engineering
8
tissues organs
8
cell behavior
8
tissue
4
hydrogels tissue
4

Similar Publications

Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.

Nanotechnology

January 2025

Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.

Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.

View Article and Find Full Text PDF

The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.

View Article and Find Full Text PDF

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

Chemical signatures of social information in Barbary macaques.

Sci Rep

January 2025

Behavioural Ecology Group, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.

Primates are well-known for their complex social lives and intricate social relationships, which requires them to obtain and update social knowledge about conspecifics. The sense of smell may provide access to social information that is unavailable in other sensory domains or enhance the precision and reliability of other sensory cues. However, the cognition of social information in catarrhine primates has been studied primarily in the visual and auditory domain.

View Article and Find Full Text PDF

Bioinspired Photo-Thermal Catalytic System using Covalent Organic Framework-based Aerogel for Synchronous Seawater Desalination and H2O2 Production.

Angew Chem Int Ed Engl

January 2025

Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.

Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!