Chronic nonbacterial osteitis (CNO) is a rare disease spectrum, which lacks biomarkers for disease activity. Sodium fluoride-18 positron emission tomography/computed tomography ([F]NaF-PET/CT) is a sensitive imaging tool for bone diseases and yields quantitative data on bone turnover. We evaluated the capacities of [F]NaF-PET/CT to provide structural and functional assessment in adult CNO. A coss-sectional study was performed including 43 adult patients with CNO and 16 controls (patients referred for suspected, but not diagnosed with CNO) who underwent [F]NaF-PET/CT at our expert clinic. Structural features were compared between patients and controls, and maximal standardized uptake values (SUV [g/mL]) were calculated for bone lesions, soft tissue/joint lesions, and reference bone. SUV was correlated with clinical disease activity in patients. Structural assessment revealed manubrial and costal sclerosis/hyperostosis and calcification of the costoclavicular ligament as typical features associated with CNO. SUV of CNO lesions was higher compared with in-patient reference bone (mean paired difference: 11.4; 95% CI: 9.4-13.5; p < .001) and controls (mean difference: 12.4; 95%CI: 9.1-15.8; p < .001). The highest SUV values were found in soft tissue and joint areas such as the costoclavicular ligament and manubriosternal joint, and these correlated with erythrocyte sedimentation rate in patients (correlation coefficient: 0.546; p < .002). Our data suggest that [F]NaF-PET/CT is a promising imaging tool for adult CNO, allowing for detailed structural evaluation of its typical bone, soft-tissue, and joint features. At the same time, [F]NaF-PET/CT yields quantitative bone remodeling data that represent the pathologically increased bone turnover and the process of new bone formation. Further studies should investigate the application of quantified [18F]NaF uptake as a novel biomarker for disease activity in CNO, and its utility to steer clinical decision making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945721PMC
http://dx.doi.org/10.1093/jbmrpl/ziad007DOI Listing

Publication Analysis

Top Keywords

disease activity
12
chronic nonbacterial
8
nonbacterial osteitis
8
reference bone
8
cno
6
bone
5
f-sodium fluoride
4
fluoride pet-ct
4
pet-ct visualizes
4
disease
4

Similar Publications

The nanoscale organization of the Nipah virus fusion protein informs new membrane fusion mechanisms.

Elife

January 2025

Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.

Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.

View Article and Find Full Text PDF

Importance: Cutaneous chronic graft-vs-host disease (GVHD) is independently associated with morbidity and mortality after allogeneic hematopoietic cell transplant. However, the health-related quality-of-life (HRQOL) domains that are most important to patients are poorly understood.

Objective: To perform a concept elicitation study to define HRQOL in cutaneous chronic GVHD from the patient perspective and to compare experiences of patients with epidermal vs sclerotic disease.

View Article and Find Full Text PDF

The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities.

View Article and Find Full Text PDF

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!